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[(ALMOST) UNPUBLISHABLE RESULTS] 

IoT-based analytics for sports has several 
applications. Patterns of balls, racquets, 
and players are being analyzed for 

coaching, strategic insights, and predictions. 
iBall provides a significantly cheaper 
alternative to million dollar camera-based 
solutions. Real-time analytics should be 
possible anytime, anywhere. Aspiring 
players in local clubs could read out their 
own performance from their smartphone 
screens; school coaches could offer 
quantifiable feedback to their students. 

In this paper, we elaborate on our 
experience in developing iBall’s IoT platform 
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This paper is an experience report on IoT platforms for sports analytics. 
In our prior work [11], we proposed iBall, a system that explores the 
possibility of bringing IoT to sports analytics, particularly to the game 
of Cricket. iBall develops solutions to track a ball’s 3D trajectory and 
spin with inexpensive sensors and radios embedded in the ball. Towards 
this end, iBall performs fusion of wireless and inertial sensory data and 
integrates them into physics-based motion models of a ball in flight. 
The median ball location error is at 8cm while rotational error remains 
below 12° even at the end of the flight. The results do not rely on 
training, hence we expect the core techniques to extend to other sports 
like baseball, with some domain-specific modifications. Ph
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– particularly on details from early ball 
prototyping, ground truth extraction 
and the technical platform. This includes 
several challenges in system design and 
engineering to satisfy various requirements 
of sensor embedding, impact resistance, 
high sampling rate, sensor calibration, 
synchronization, etc. iBall considers a case 
study of cricket ball tracking. However, the 
platform is also applicable to tracking other 
sporting objects (racquet, puck, hollow 
balls) and humans, with application-specific 
customization. 

The rest of the paper is organized into 
three modules. We first discuss embedding 
of sensors inside cricket balls. Then we 
deliberate on various alternatives for 
obtaining ground truth for validating iBall’s 
tracking algorithms. Finally, we discuss 
pre-processing steps necessary to work with 
sensor data from Inertial Measurement Units 
(IMU) and UltraWideBand (UWB) radios. 

BALL PROTOTYPING 
Figure 1 shows our sensor platform, which 
consists of a CPU, IMU and a UWB Radio. 
The IMU and UWB sensors provide 
measurements necessary for tracking the 
location and rotation of a ball. Embedding 
the platform inside a cricket ball is a non-
trivial task and involves several engineering 
challenges. We worked with D2M [1], a 
mechanical design company towards this 
end. Below, we enumerate requirements  
for embedding the sensor. 
Snugness: The sensor has to fit snugly 
inside the ball to avoid rattling and to 
capture the motion of the ball precisely. 
Battery Life and Recharge-ability: The 
battery life of the sensor should support 
multiple hours of play before recharge.  
The battery should be accessible for 
charging. Design for wireless charging or 
energy harvesting should be considered. 
Mass Distribution: An embedded sensor 
should not alter the mass distribution, so 
the aerodynamic properties of the ball  
will be kept unaffected. 

FIGURE 1. Intel Curie board. 

FIGURE 3. Curie sensor embedded 
within a case.

FIGURE 2. Space carved out of the 
wooden core for sensor embedding.

FIGURE 4. Sensor-embedded case fit into  
the ball (a). Sealed ball with the sensor (b).

(a) (b)

Absorbing Impacts: The sensor should be 
able to withstand severe impacts generated 
when the ball is bounced or hit with a bat. 

We now discuss some of the key 
designs explored towards satisfying these 
requirements. 

Embedding in Wooden Core 
We cut open an off-the-shelf cricket ball  
to access the wooden core as shown in 
Figure 2. A small section is then scooped 
out of the core, such that a plastic case 
holding the sensor (Figure 3) fits inside the 
cavity. A view of the case inside the ball is 
shown in Figure 4(a). Finally, the top of  
the wooden core is sealed using screws 
and the lid is closed and taped, to render a 
usable prototype, as shown in Figure 4(b). 
While the prototype couldn’t withstand 
impacts, we could conduct several 
experiments without bouncing the ball. 
We conduct experiments to characterize 
the motion of the ball under flight. We 
also observe the impacts recorded by the 
accelerometer during throws, centripetal 
forces, angular velocities under spin, 
spin rate, magnetometer variations, etc. 
Properties of the unreactive accelerometer 
under free fall, gyroscope saturation 
under high spin as well as parabolic 
nature of trajectories were studied. The 
insights gathered form the core of tracking 
algorithms in iBall [11].
 
Embedding in 3D Printed Plastic Core  
While the wooden core prototype provides  
valuable insights about the inertial properties 
of a cricket ball under flight, the flexibility 
for carving out finer structures with high 
precision is limited. We therefore consider 
an alternative as shown in Figure 5 with a 
3D printed plastic core. This allows carving 
out smaller spaces for precisely embedding 
LEDs inside the ball for ground truthing 
(details in Section “LED Markers”). In 
addition, the plastic core offers another 
advantage. The screws and nuts used to 
attach various parts of the core lose traction 
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(after a few cycles of operation) with 
the wooden core (Figure 2). The plastic 
core, on the other hand, maintains good 
traction. However, the main disadvantage 
is that the structural property of the ball, 
such as deformation during impact, is not 
maintained and the ball can break easily. 
For reasons mentioned in Section “LED 
Markers,” we decide not to pursue LEDs 
and hence we experiment with wooden 
core prototypes.

Handling Impact: Shock Absorbers 
One of the main drawbacks of earlier 
prototypes is that they were not able to 
resist the impact of the ball with the ground. 
Hence, we embedded the sensor inside a 
shock-absorbent orange silicone rubber as 
shown in Figure 6. We then embedded it 
into the ball as in Figure 7. This prototype 
turned out to be more robust with ground 
impacts and was used for evaluation in iBall. 

Summary and Future Considerations 
The prototypes could snugly fit the sensors 
inside and offer a couple of hours of battery 
life. We could conduct experiments, collect 
data and design algorithms to track the 
location and rotation of the ball. However, 
the prototypes alter the mass distribution. 
Also, we did not test for impact resistance 
when hit with the bat. Experts from D2M 
[1] have corroborated that a near-ideal 
mass distribution with impact tolerance 
is feasible. The opportunities arise from 
the feasibility of reducing the spatial 
footprint of the sensor. Additionally, energy 
harvesting techniques could eliminate the 
battery altogether. Having a special-purpose 
computing platform instead of a general-
purpose platform can also help in reducing 
the sensor size. A characterization of these 
designs is left for future work. 

FIGURE 5. A 3D-printed core offers more flexibility for precisely 
embedding tiny LEDs inside the ball.

GROUND TRUTH 
A high-precision ground truth with mm 
level accuracy is necessary to validate iBall’s 
tracking algorithms. Designing such a 
platform is non-trivial because of the small 
size and high-speed motion of the ball, 
which makes it difficult to track. Below, we 
discuss various alternatives considered and 
associated tradeoffs.

LED Markers 
We explore LED-based Motion Capturing 
(MOCAP) system from PhaseSpace [7].  
Figure 8 shows the architecture of PhaseSpace 
MOCAP. A group of LED markers are placed 
on the target to be tracked. Each marker 
is uniquely identifiable and is tracked by 
multiple synchronized cameras. This results 
in a mm level accuracy in rotation and 
location estimates. 

To derive LED based ground truth, we 
instrument the ball with LED markers. 
Figure 9 shows an example. While this 
was helpful, the protruding LEDs can 
make the ball unbouncable. Hence, we 
attempted to embed LEDs inside the ball 

as shown in Figure 5. However, the effort 
was unsuccessful since the internal LEDs 
were occluded by the depth of the outer 
leather layer that covers the plastic core. 
Moreover, LEDs require that a controller 
is also embedded inside the ball to power 
and control them. This substantially 
increases the footprint of the infrastructure 
embedded and significantly alters the 
aerodynamic properties of the ball. Hence, 
we eliminate LEDs as a candidate and look 
for other alternatives.

Infrared Markers 
A set of passive markers are placed on 
the object to be tracked. These markers 
reflect infrared light that is trackable by 
cameras (similar to tracking of active 
LEDs). However, unlike LEDs, the passive 
infrared markers do not have uniquely 
distinguishable identifiers. They are 
identified based on their relative geometry. 
The location of individual markers can be 
translated into 3D location and rotation of 
the ball similar to LED-based tracking.

First, we stuck infrared reflective tapes 

[(ALMOST) UNPUBLISHABLE RESULTS] 

FIGURE 6. A shock-absorbing silicone rubber 
is used to wrap the sensor before embedding 
it inside a case. FIGURE 7. Impact-absorbing sensor case is fit into the ball and then sealed.
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FIGURE 10. A cricket ball instrumented 
with IR tapes. 

FIGURE 11. A cricket ball instrumented 
with spherical IR markers. 

FIGURE 8. Motion Capture System (borrowed from [7]). 

on the ball (see Figure 10) and attempted 
to track them with ViCON [5] infrared 
cameras. Sticky tapes can minimize the 
impact on the aerodynamics of the ball. 
However, since reflections are not strong, 
tracking is difficult. Hence, we had to stick 
spherical markers on the ball (see Figure 
11), ultimately trading off ball aerodynamics 
for accuracy.

High-Speed Camera 
High-speed visual cameras provide yet 
another alternative for ground truth 
measurements. Hawkeye[3] is a high-speed 
camera-based technology being used in 
professional games like cricket, tennis, 
soccer, etc., to track the location of a ball 
with mm level accuracy. However, Hawkeye 
cannot track the rotation of the ball, which 
is a key parameter for analytics. 

We attempt to capture the rotation of the 
ball by sticking colored tape on the ball as 
shown in Figure 12(a). Figure 12(b) shows 
an experiment in which the color-taped 
ball is in flight and we wish to track its 
orientation using these tapes. Figure 12(c) 
is a close-up of the ball in flight. We attempt 
to determine the 3D rotation necessary 
to make the tapes parallel to the axes of 
the camera. In Figure 12(d), the ball has 
been visually rotated such that the tapes 
are aligned with the direction of camera 
axes. In sum, detecting the orientation 
of color tapes determines the orientation 
of the ball. Although the accuracy was 
reasonable, multiple cameras positioned 
close to the ball are necessary for tracking. 
Also, bright lighting conditions or outdoor 
infrastructure under sunlight is necessary to 
minimize blur from the high speed motion 

of the ball. This substantially increases the 
complexity of the infrastructure. Although 
the camera has an advantage of being 
completely passive and not affecting the 
aerodynamics of the ball, we discarded it 
because of the above-mentioned drawbacks. 

As discussed in Section “Infrared 
Markers,” we use the ViCON platform with 
spherical markers (Figure 11) for validating 
iBall. 

TECHNICAL PLATFORM 
The primary technical platform building 
iBall is composed of IMU sensors and UWB 
radios. IMU is used for tracking rotation 
and UWB is used for tracking location. 
In this section, we elaborate on the pre-
processing steps necessary to work with  
the sensor data. 

IMU 
Calibration 
An IMU consists of an accelerometer, 
gyroscope and magnetometer. More details 
on the operation and physical models can 
be found in [4]. The sensors measurements 
would invariably be noisy [10]. Some of 
these errors arise due to manufacturing 
imperfections, due to misalignment of 
sensor axes or internal effects, such as 
interference from the circuitry leading to 
biases and erroneous transformations on 
the measurements [8, 9]. While smartphone 
operating systems such as Android/iOS [6] 
might compensate the raw measurements 
for such artifacts before passing on the sensor 
data to a developer, a raw sensor hardware 
used in iBall needs systematic calibration. 
Below, we present a simplistic model of errors 
and techniques for compensation. 

Magnetometer: A magnetometer would 
measure the magnetic field vector as experi-
enced by the sensor. In an environment free 
of magnetic interference, a magnetometer 
would measure the geomagnetic field. The 
magnitude of the measurement would be 
a constant at a given geographical location 
whereas the direction would be a function 
of sensor orientation. The measurement 
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FIGURE 9. LED-instrumented ball (a). Sensor 
embedded inside (b). LEDs stuck with Velcro on 
the outside and sealed (c) LEDs powered (d). 

(c)

(a)

(d)

(b)
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would point towards the direction of the 
geomagnetic field relative to the sensor’s 
frame of reference. 

Given constant magnitude, the measure- 
ments of the geomagnetic field across 
different sensor orientation should lie on the 
surface of a zero centered sphere. However, 
in reality, sensor imperfections (e.g., axes 
misalignment, sensor misalignment, bias) 
pollute the measurements. A simple model 
of magnetometer error is expressed below. 

Bx =sxHx+bx+εx (1) 
Here, Bx is the x component of sensor 

measurement. Hx is the true x component 
of the magnetic field. sx corresponds to 
scale error, bx is a constant bias and εx is 
Gaussian noise. y and z components are  
also polluted by similar errors.

Due to scale and bias errors, measure- 
ments of the geomagnetic field across 
different orientations do not lie on a zero 
centered sphere. Instead, they lie on a 
non-zero centered ellipsoid as shown in 
Figure 13(a). The axes of this ellipsoid 
vary roughly by 5% (hence difficult to 
perceive the difference visually). We 
follow a simple ellipsoid fitting method 
as outlined in [2] to compute the scale 
and bias errors. The resulting sphere after 
compensation is plotted in Figure 13(b), 
which is a zero centered sphere. We apply 
the computed scale and bias corrections to 
all magnetometer measurements. 
Accelerometer: An accelerometer also 
suffers from axes misalignment, scale and 
bias errors, like a magnetometer. Hence, 
the entire process of error modeling and 
compensation is similar. Figure 14 shows 
measurements of gravity at 10 different 
orientations of the accelerometer. Clearly, 

they differ considerably from the true 
value of gravity (9.8 m/s2) because of 
sensor imperfections. The compensated 
measurements of gravity post-calibration is 
plotted in Figure 15.
Gyroscope: A gyroscope experiences a 
constant bias in its measurements. To 
observe its effect, we conduct a simple 
experiment in which the sensor is rotated 
across all 3 of its axes and returned to 
its original orientation. The integral of 
gyroscope measurements should return to 
0. However, Figure 16 shows a large error 
between initial and final rotations. 

To determine the bias, we observe 
gyroscope measurements when the sensor 
is static. The mean of these measurements 
would converge to an estimate of the bias. 

Figure 17 shows the results for the previous 
experiment after compensating for the 
gyroscope bias. Evidently, the difference 
between final and initial orientations 
has been substantially reduced after bias 
compensation.

Synchronization with ViCon 
To compare IMU data with ViCON, we 
need to synchronize the two frames to 
eliminate the offsets between their clocks. 
Towards this end, we begin data collection 
sessions with a synchronization phase. We 
hold the ball firmly in hand (with its Z-axis 
pointing to our right) and lower the arm 
down and up four times. During this period, 
ViCON records the ball moving down and 
up four times, while the gyroscope records 
the ball having negative-then-positive 
rotation around its own Z-axis four times. 
When the ball reaches the lowest point, 
ViCon's Z-axis data reaches minimum 
while gyroscopes Z-axis data crosses 0 and 
further goes up (Figure 18). We align these 
two sets of timestamps in the two systems to 
synchronize ViCon and the IMU sensor. 

FIGURE 13. (a) Uncalibrated magnetometer 
samples – lie on a non zero centered ellipsoid. 
(b) Calibrated magnetometer samples – lie on 
a zero centered sphere.
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FIGURE 12. Tracking the 3D rotation of a  
ball visually using color tapes. Color-taped 
cricket ball (a). Ball in flight (b). Zoomed view  
of randomly oriented colored tapes (c).  
Visual alignment of tapes to camera axes (d).
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FIGURE 14. Gravity measurement with an uncalibrated 
accelerometer is error prone – a function of orientation. 

FIGURE 15. Gravity measurement from a calibrated  
accelerometer is close to 9.8 m/s2 and independent of orientation. 
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Figure 18 shows the selection of these 
two sets of timestamps. By matching 
the highlighted points, the clocks can be 
synchronized to millisecond level accuracy. 

UWB 
iBall uses a UWB platform for localization. 
Two UWB radios (called anchors) are 
deployed on either end of the cricket 
pitch (stumps) as shown in Figure 19. The 
ball is also embedded with a UWB radio, 
capable of exchanging signals with the 
anchors. The anchors can measure their 
distance (Range) from the ball as well as 
Angle of Arrival of incoming signals, for 
localization. We elaborate on sampling rate 
and synchronization-related enhancements, 
which are critical to iBall’s performance.

Enhancing the Sampling Rate 
High-speed localization entails a high 
sampling rate of ranging measurements at 
the anchor. Briefly, each range measurement 
requires a “poll” message from the anchor 

and a “response” packet from the ball. The 
range is then computed based on time of 
arrival of the response packet relative to  
the time at which the poll packet was sent. 
We need ranging measurements at both 
anchors for 3D localization. Naively 
extending the simple ranging scheme to 
multiple anchors will introduce two issues: 

(1)	Since each anchor needs to perform 
ranging separately, sampling rate is 
reduced by a factor equal to the number 
of anchors 

(2)	Time synchronization needs to be 
achieved offline between data from 
multiple anchors. 

We follow a simple, yet effective, 
procedure to sidestep the above problems. 
Wireless signals pass through a broadcast 
medium. As illustrated in Figure 20, the 
poll and response packets initiated by one 
(Active) anchor can be overheard at another 
(passive anchor). By recording the time 

of arrival of these two packets, the passive 
anchor is able to automatically infer its 
range from the ball. 

To validate such a passive ranging, we 
conduct an experiment, in which the ball 
performs a poll/response ranging with an 
active anchor. The range of the ball relative 
to that anchor is plotted in Figure 21(a) and 
compared with ViCON ground truth. A 
passive anchor deployed in the same area 
was also able to infer its range relative to 
the ball without any active transmissions 
of its own. Figure 21(b) shows that the 
passive range is in close agreement with 
ViCON ground truth. Also, passive ranging 
data is implicitly time synchronized with 
active ranging data since passive ranges are 
inferred from the same packets.

Synchronization with ViCON 
Similar to IMU’s synchronization with 
ViCON, the UWB’s clock must also 
be synchronized with ViCON so as to 
compare UWB determined location with 
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FIGURE 16. With an uncalibrated gyroscope, the error 
accumulates faster.

FIGURE 17. A calibrated gyroscope can decrease the error 
accumulation considerably. 
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FIGURE 19. Two anchors and a ball deployed on the ground. 
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FIGURE 20. A passive anchor estimates its range from overheard poll/response packets. 

FIGURE 21. Similar to active ranging (a), passive ranging agrees with ViCON ground truth (b).
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ViCON. We follow a similar procedure as 
IMU synchronization discussed in Section 
“Synchronization with ViCon.” 

CONCLUSION 
This paper discusses our experience in 
developing an IoT-based platform for 
cricket ball tracking. A sensor embedded 
inside the ball should be snugly fit, impact 
resistant and should not hamper the ideal 
mass distribution of the ball. We consider 
various alternatives, including embeddings 
within a wooden core and 3D-printed 
plastic core. We use a rubber cushion for 
impact resistance. While not perfect, the 
prototype is stable enough to experiment 
with various speed and spin regimes offering 
valuable insights as reported in [11]. A 
high-precision ground truth is needed for 
benchmarking the tracking algorithms. 
While LED, ViCON and high-speed 
cameras offer unique tradeoffs, the right 
choice would be a function of a specific 
sport, mobility regimes and the range of 
coverage. Finally, working with the IMU 
sensor data as well as UWB measurements 
entails appropriate preprocessing steps, such 
as calibration, synchronization, sampling 
rate enhancements before using them for 
ball tracking. While there are opportunities 
to make the platform more robust and 
extensive, we believe there are many other 
sports analytics applications that can benefit 
with the platform. n




