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ABSTRACT

Head related transfer functions (HRTF) describe how sound signals
bounce, scatter, and diffract when they arrive at the head, and travel
towards the ear canals. HRTFs produce distinct sound patterns that
ultimately help the brain infer the spatial properties of the sound,
such as its direction of arrival, 6. If an earphone can learn the HRTF,
it could apply the HRTF to any sound and make that sound appear
directional to the user. For instance, a directional voice guide could
help a tourist navigate a new city.

While past works have estimated human HRTFs, an important
gap lies in personalization. Today’s HRTFs are global templates
that are used in all products; since human HRTFs are unique, a
global HRTF only offers a coarse-grained experience. This paper
shows that by moving a smartphone around the head, combined
with mobile acoustic communications between the phone and the
earbuds, it is possible to estimate a user’s personal HRTF. Our
personalization system, UNIQ, combines techniques from channel
estimation, motion tracking, and signal processing, with a focus on
modeling signal diffraction on the curvature of the face. The results
are promising and could open new doors into the rapidly growing
space of immersive AR/VR, earables, smart hearing aids, etc.
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1 INTRODUCTION

Humans can inherently sense the direction 6 from which a sound
arrives at their ears. The human brain essentially analyzes the time
difference of the sounds across the two ears and maps this difference
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At to 0. If the mapping was one-to-one, then the estimation of 0
would be easy. Unfortunately, the mapping is one-to-many, meaning
that for a given At, there are many possible 0s. Figure 1(a) shows an
example where all points on the (red) hyperbola produce identical
At at the ears. How can humans still disambiguate the direction
0? The answer lies in what is classically known as the head related
transfer function (HRTF), explained next.

Figure 1: Humans identify sound direction through (a) time differ-
ence of arrival, and (b) pinna multipath.

Briefly, the sounds that actually enter the ear-canal is influenced
by the shape of the human head and the pinna of the ear (shown
in Figure 1(b)). The pinna produces micro-echoes to the arriving
signal, while the 3D curvature of the head bends (or diffracts) the
signals [16, 22, 29]. The net result is that the eardrum receives a
sophisticated signal pattern that helps the brain disambiguate 6. In
summary, one can view the head (including the pinna) as a filter that
alters the signal depending on its angle of arrival 6. In frequency
domain, this filter is called head related transfer function (HRTF).

Knowing HRTF for each 6 opens new possibilities in spatial acous-
tics. An earphone could take any normal sound s(t), apply the
(left and right) HRTFs for a desired 6, and play the two sounds in
the corresponding earbuds [25, 59]. The brain would perceive this
sound as directional, as if it is arriving from an angle 6 with respect
to the head. Applications could be many, ranging from immersive
AR/VR, to gaming, to assisted technology for blind individuals [52].

For instance, (1) users may no longer need to look at maps to
navigate from point A to point B; a voice could say “follow me”
in the ears, and walking towards the perceived direction of the
voice could bring the user to her destination. Blind people may
particularly benefit from such a capability. (2) A virtual-reality
meeting could be held through immersive acoustic experiences.
Members could pick their seats in a virtual meeting room and
each member could hear the others from the direction of their
relative configuration. (3) Gaming and other 3D applications would
naturally benefit. Each musical instrument in an AR/VR orchestra
could be fixed to a specific location around the head. Even if the
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head rotates, motion sensors in the earphones can sense the rotation
and apply the HRTF for the updated 6. Thus, the piano and the
violin can remain fixed in their absolute directions, offering an
immersive user experience.

HRTF-guided spatial sounds are already available in products today
[3, 6-8], however, important challenges remain open. One key
challenge is in HRTF personalization [29, 58]. Today’s products
use a global HRTF template, i.e., the HRTF is carefully measured
for one (or few people) in the lab and this “average” template is
then incorporated across all products. Unsurprisingly, the spatial
acoustic experience is known to be sub-optimal [27] and varies
widely across individuals [5, 10]. The natural question is: why not
estimate personalized HRTFs for each user?

To answer this, let us briefly understand today’s method of estimat-
ing HRTF [22, 55]. A user, Bob, is brought to an acoustic echo-free
chamber, seated at a special immovable chair, and fitted with a
normal earphone. A high quality speaker then plays carefully de-
signed sounds (e.g., a frequency sweep) from all possible angles 0
and distances r around Bob’s head. The ground truth for 6 and r are
accurately measured from ceiling cameras installed in the chamber.
Finally, the recordings from the left and right ears are converted
to the HRTFs for the corresponding (6, r) tuple. Estimating per-
sonalized HRTF at home would entail hundreds of accurate (0, r)
measurements, while maintaining the exact head position. This is
impractical even for the technology savvy individual.

This paper aims to estimate a user’s personal HRTF at home by
leveraging smartphones, arm gestures, and acoustic signal process-
ing. The high level idea of our system, UNIQ, is simple. We ask a
user to sit on a chair, wear her earphones, and then move her smart-
phone in front of her face (as much as their arms would allow). The
smartphone plays pre-designed sounds that the earphones record;
the smartphone also logs its own IMU measurements during the
arm-motion. UNIQ’s algorithmic goal is to accept these 3 inputs
— the earphone recordings, the IMU recordings, and the played
sounds — and output the user’s personal HRTF, H(g .

In estimating the personal HRTF, we face 2 key challenges: (1) The
phone’s location needs to be tracked with high accuracy as the
phone is moving around the head. The IMU is inadequate for such
fine-grained tracking, hence the acoustic communication between
the smartphone and the earphone needs to aid the tracking algo-
rithm. Unfortunately, since the acoustic signal propagation between
the phone and earphone undergoes head-related diffraction and
pinna-multipath, standard geometric models do not apply. This
leads to a joint optimization problem, i.e., to solve for the phone’s
location, HRTF needs to be solved, and the vice versa.

(2) The above module solves the near-field HRTF. ! However, the
near-field HRTF is not ideal when the emulated sound source needs
to be far away. Briefly, far-field sounds are almost parallel rays
when they arrive at the two ears, which is not the case for the near-
field. Since the HRTF varies as a function of the signal’s incoming
directions, the difference between near and far-field matters. Thus,

lNormally, when the sound source is less than 1m from the head, it is considered to
be in the "near-field". [4]
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the second challenge is to “synthesize” or “extrapolate” the far field
HRTF based on the sequence of measurements from the near field.

UNIQ addresses these two main challenges by first modeling the
3D head-geometry using 3 parameters, applying diffraction on the
parametric model, and deriving the expected signal equations at
the ear. This expectation can now be compared against the acous-
tic measurements from the phone, along with the IMU readings
that (partly) track the phone’s motion. Together, UNIQ formulates
a minimization problem, extracting the head parameters and the
phone locations that best fit the model. With some additional re-
finements (such as discrete-to-continuous interpolation [40]), the
near-field HRTF is ready. UNIQ then selects suitable components
from the near-field HRTF to synthesize a physics-based model of
far-field signals. This model is fine-tuned with the estimated head
parameters to ultimately yield the far-field HRTF.

Finally, UNIQ shows an application of the far-field HRTF in estimat-
ing the angle of arrival (AoA) of ambient signals. This means when
Alice is wearing her earphones, and someone calls her name, the
earphones estimate the direction from which the voice signal ar-
rived. Classical beamforming/AoA algorithms do not apply directly
since the earphone microphones are now subject to diffraction and
pinna multipath. UNIQ develops an HRTF-aware AoA estimation
technique to enable these application-specific capabilities.

We implement UNIQ on off-the-shelf earphones and smartphones,
and evaluate with 5 volunteers. Our success metric is two-fold:
(1) We compare UNIQ’s personalized HRTF with the upper bound,
which is the ground-truth HRTF accurately measured for each vol-
unteer in our lab. (2) We also compare against the global or general
HRTF available online; this is the lower bound for personalization.

Results show that our personalized HRTF is, on average, 1.75X
more similar to the ground-truth HRTF than the global HRTF. The
personalization extends improvements to all users, and is robust
to various kinds of sounds such as music and speech. In the AoA
application, we observe more than 20° average improvement when
using the personalized HRTF over the global one. We believe our
current method is a step forward in this long-standing problem
of HRTF personalization [27, 58], made possible by the fusion of
motion sensing and acoustics. Refinements are still possible as we
describe in Section 7, however, in the context of this paper, the
main contributions may be summarized as follows:

1. To the best of our knowledge, this is among the earliest attempts
to bring (motion + acoustic) sensor fusion to HRTF personalization.
We map the personalization problem to one in multi-modal local-
ization and synthesis, and show that IoT-style architectures can
usher new approaches.

2. We model signal diffraction on the human head, solve for head

parameters, and utilize it as a critical component in estimating
the personal HRTF. We develop a functional prototype that is
convenient, practical, and relevant to emerging ideas in immersive
AR/VR applications.

The rest of this paper will expand on each of these contributions,
starting from groundwork and measurement, followed by system
design, and evaluation.
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2 GROUNDWORK ON HRTF

This section sheds light on the 2 fundamental constructs of HRTFs:
(1) the acoustic channel introduced by a user’s pinna, and (2) diffrac-
tion caused by curvature of faces/heads. This should also help char-
acterize the gap between the global and personal HRTF.

m Does the pinna’s effect vary with angle of arrival, §? Recall
that when a sound signal impinges on the pinna, it bounces and
scatters in complex ways, reaching the ear-drum at staggered time
instants. To test if this effect is sensitive to the angle of arrival
0, we ask a user, Alice, to wear an in-ear microphone on her left
ear. We play short chirps from a speaker on the left side of Alice,
so that the head’s effects do not interfere with the microphone
recording (we intend to only measure the impact of the pinna). The
speaker is moved in a semi-circle, starting from the front of the
nose (6 = 0°) and ending at the back of the head (6 = 180°), with
measurements every 10°. With 18 audio measurements, denoted
A(0), we now compute the cross-correlation ¢ between A(6;) and
A(6)),1,j={1,2,...,18} as

¢ =max(f(r)) = max( Z A(0;) (1) - A(G))(t + 1))

t=—00
where 7 is the relative delay between 2 audio signals.

Figure 2(a) shows the results. Evidently, the correlation matrix is
strongly diagonal, implying that the pinna’s impulse response is
quite sensitive to 6, with almost a 1:1 mapping. This is consistent
across our 5 volunteers, suggesting that the pinna indeed plays an
important role in the human’s ability to perceive directional sounds
(at a resolution of ~ 20°).

m Does the pinna’s effect vary across users? The natural next
question is whether the pinna’s response varies across users for the
same 0. For this, we cross-correlate the audio measurements from
2 users, Aajice(0i) and A,y (0;), Vi. Figure 2(b) shows the results.
Clearly, Alice and Bob’s pinnas do not match well, for example,
Alice’s recording (angle 1) at angle 80° corresponds well with Bob’s
recording (angle 2) at angle 140°. This means, when global HRTFs
are used in ear-devices, the resolution for directional sounds can be
no higher than ~ 60°, suggesting that the gap between global and
personal is not negligible. Thus global HRTF obviously degrades
user experience.
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Figure 2: Pinna’s effect: (a) Diagonal confusion matrix for the same
user, across different angle of arrival, 0. (b) For different people,
their pinna’s transfer functions are markedly different.

m Do signals diffract on a person’s face/head? Is diffraction
distinct across users?

Diffraction is the phenomenon where waves bend around the cor-
ners of an obstacle or through an aperture into the region of geomet-
rical shadow of the obstacle/aperture [38]. From the physics of wave
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propagation (see detailed explanations in [9]), diffraction depends
on the relative wavelength of the signal compared to the size of
the object [9], as shown in figure 3. With larger wavelength, sound
waves exhibit far more diffraction than, say, light or RF signals.

P 1111

Figure 3: Diffraction illustration: a wave will propagate into the
region of geometric shadow. The larger the wavelength compared
to the aperture, greater is the diffraction [2].

Figure 4 illustrates an experiment to characterize diffraction on the
human face, particularly due to the curvature of the cheek. We ask
Alice to wear a reference microphone on her right ear; a second
(test) microphone is pasted at 6 different locations on the left part of
her face (starting with the tip of the nose and ending at the ear). An
electronic speaker (shown on the user’s right) plays a chirp and we
calculate the chirp’s time difference of arrival (TDoA), At, between
the 2 microphones?. Multiplying speed of sound v with At, we get
the difference in physical distance that the signal has traveled from
the speaker to the 2 microphones: Ad = v - At.

ke
(5. R) R (Ref.
‘)) Q Mic.) T(Test

Mic.)
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Figure 4: Experiment to test for signal diffraction on the curvature
of the human head.

In parallel, using precise measurements from a camera, and a soft-
tape that can bend along the curvature of the face, we obtain the
following distances: the Euclidian distance from the speaker S to

the reference microphone R, df;;z)’ the Euclidian distance to the

test microphone T, df;‘;,), and the distance along the diffracted-

path to the test microphone T, d?;fT]; The test for diffraction is now

easy: Does Ad derived from audio recordings better match with
the Euclidian path difference AdE¢% or the diffracted path AdPYf

where
AdEcu — dEuc _ dEuc

(8.T) ~ (SR
Diff _ JE Diff
NPT = d(;,cT) - d(S,R)

2This is possible because the 2 microphones are synchronized with a wire.
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Figure 5 plots the results of matching. Evidently, Ad matches strongly
with the diffracted path, especially as the test microphone moves

further away from the reference. The results of this experiment

were again consistent across multiple users, offering strong evi-
dence that (1) audible sounds do not penetrate through the human

head, and (2) modeling diffraction is critical for signal processing

on human bodies.
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Figure 5: Acoustic and physical measurements are consistent;
shows evidence that signals diffract along the curvature of the head.

Building on these basics, we turn to estimating personal HRTF and
applying it to AoA estimation and beamforming.

3 SYSTEM SKETCH

This section outlines the key ideas, starting with near-field HRTF,
then expanding to the far-field, and finally discussing an application
of the estimated HRTF.

3.1 Near field HRTF

Consider a user moving her phone (in a circular trajectory) around
her head, and her in-ear earphones recording the sounds transmit-
ted by the phone. If we can accurately track the phone’s location,
then near field HRTF can be directly estimated. This is because
the acoustic channel can be estimated from each location of the
phone, and since location tells us the angle 6, the channel from each
angle is now known. The per-angle acoustic channel is exactly the
near-field HRTF. Thus, to estimate the near field HRTF, the
main challenge is in estimating the phone’s location.

While IMU sensors on the phone can help with localization, it
is far too noisy for the accuracy levels needed with HRTFs. The
main reason is well known, i.e., location estimation with IMUs
requires a double integration on the accelerometer data, which
causes the noise to grow multiplicatively. In light of this, UNIQ
operates in the polar coordinates < r, 6 >. The intuition is to fuse
the IMU’s gyroscope data with the acoustic channel information
— the gyroscope helps with inferring the angular component 6
and the acoustic signal delays (between the earphones) help with
estimating the distance r. Even though each is erroneous in its
own way, we hope joint optimization will achieve accuracy and
robustness.

While inferring geometric distances r from multiple microphones
should be feasible, it poses unique problems in our case with ear-
phones. Since the head and pinna filter the acoustic signal arriving
at the ears, conventional techniques from array signal processing
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are no longer accurate. In other words, we need to model the head’s
diffraction effect on sound waves to make the recorded acoustic
information usable. Additionally, we also need to cope with head pa-
rameters, which is obviously different across people, and will affect
diffraction. In sum, we are faced with the problem of jointly esti-
mating the phone location and diffraction-related head parameters,
using a fusion of both IMU and acoustic information. This motivates
our first module in Figure 6: “Diffraction-aware Sensor Fusion”.

This module gives us the near-field HRTF, but only at discrete angles
around the head. To generalize to continuous angles, we input
the discrete estimates into the “Near Field HRTF Interpolation”
module. The interpolated output allows UNIQ to synthesize binaural

sounds for any location near the user>.

3.2 Far field HRTF

Now consider what happens when an earphone user wants to
simulate sounds from the far field (e.g., a user listening to a piano
in a virtual concert - the sound should appear to come from the far-
away stage). Say this far field location is at an angle 8 from the head.
Even though we know HRTF(6) from our near-field estimation,
using this HRTF(0) for far-field is non-ideal. This is because sound
signals arriving at the ears from a nearby location at angle 6 would
be different from a far-away location at angle 0. As illustrated in
Figure 7, far-field produces parallel rays while near-field produces
non-parallel rays, causing different multipath, arrival times, and
diffraction profiles at the 2 ears.

In view of this, UNIQ needs to model how parallel rays from angle
0 would scatter/diffract on the head and arrive at the ears. Since the
near-field HRTF has already modeled head and pinna multipath,
we combine information from multiple HRTF(0;) to synthesize
the far-field HRTF. We fine-tune this far-field HRTF by adjusting
the delays and amplitude differences based on the head parameters
learnt from the sensor fusion module. These operations make up
the “Near-Far Conversion” module, which outputs the far-field
HRTF. Combining near and far-field HRTFs, we can now create
binaural sounds from any location around the user.

Finally, we develop a “Binaural Angle of Arrival (AoA) Estima-
tion” module as an example application of far-field HRTF. We show
how personalized HRTFs can estimate the direction of real ambient
sounds with improved accuracy.

4 SYSTEM DESIGN

Figure 6 captures the system architecture. We begin this section
with (1) Diffraction-Aware Sensor Fusion, which feeds into the (2)
Near Field HRTF Interpolation module, as well as the (3) Near-Far
Conversion module. The final output of UNIQ could then enable
a number of applications; we discuss one example: “Binaural AcA
Estimation”.

4.1 Diffraction-Aware Sensor Fusion (DSF)

Once a user rotates the phone around her head, we have the IMU
measurements and the microphone recordings. DSF’s task is to

3Binaural sounds describe what a person would hear when a sound originates at some
given location.
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UNIQ: Personalized HRTF Estimation

(1) Near Field HRTF Estimation

Y
G) q] § My Diffraction ulcad I
: , A Parameters Near Field
ware HRTF
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Fusion Location
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UNIQ: Applications
(2) Far Field HRTF
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Figure 6: System Architecture: UNIQ estimates both near and far-field HRTF taking inputs from the phone IMU and earphone microphone.
The system pipeline is composed of 3 modules (diffraction-aware sensor fusion, near field HRTF interpolation, and near-far conversion)
followed by an application that estimates binaural AoA from the personalized HRTF.

Nt
£ Field

Figure 7: Illustration of near and far HRTF for angle 0.

accept these measurements as inputs and output both the head’s
geometric parameters and the phone’s location. For this, let us
model diffraction first.

Modeling Head Diffraction

Figure 8 shows a simplified version of signal diffraction on the
head. To model this, we start by approximating the head shape as a
conjunction of two half-ellipses, attached at the ear locations. This
is necessary since the head is not symmetric between the front
and back, hence spherical models have been avoided in literature
[49]. The head shape can now be expressed through a 3-parameter
set, E = (a, b, c), where a, b, and c are the axis lengths of the two
ellipses. Now, assuming the sound source is towards the right of
the head, the signal would not penetrate through the head to arrive
to the left ear, but would bend over/around the left cheek of the
user (diffraction). With head parameters E known and for a given
phone location P, we can estimate the time at which the diffracted
signals would arrive at the two ears respectively.

Figure 9 shows the measured acoustic channel at the two ears for
the above scenario (the channels are estimated by deconvolving the
received signal with the known source signal). Clearly, the channel
has multiple peaks (or taps) since the signal reflects on the face and
these reflections also diffract. However, we are interested only in
the first peaks at the two ears, since they are the ones that reliably
capture the relationship between the phone and ear locations. This

a

Back

Figure 8: Sound waves arriving from phone at location P will
diffract around the head before reaching the two ears.

is because the subsequent peaks in the channel are paths that arrive
after reflecting on various points on the face, and while they may
be useful to image the face, they are not necessary for our purposes
of phone localization. Thus, UNIQ extracts the first peaks from the
two channels and uses the relative delay At to connect the phone
location and the head-shape in a common framework, as shown in
equation 1:

At = relative delay for first peak in hy, hg
= f(Diffraction) (1)
= f(a,b,c, P)

This serves as the basis for diffraction-aware sensor fusion.

Sensor Fusion Algorithm

Now, consider the IMU readings from the phone and the sound
recordings from the in-ear microphone (the phone and the ear-
phones are synchronized). UNIQ infers the phone’s inertial rotation
from the IMU’s gyroscope, which translates to the phone’s polar
angle relative to the head. Of course, this still does not give the
phone location (since the distance to the head is unknown).
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Figure 9: Channel impulse response: first tap corresponds to
diffraction path

On the other hand, if the parameters E = (a, b, ¢) are known, the
relative delay from the acoustic channels can give phone location
(with some ambiguity since 2 front/back locations can produce the
same delay at the ears). Said differently, IMUs and acoustic channels
do not individually solve the localization problem, but contribute
adequate information to (over) determine the system of equations.
This is exactly why sensor fusion helps — UNIQ jointly solves for
head parameter and phone location through a fusion of IMU and
acoustics.

The steps of the fusion algorithm can now be laid out:

1. As the smartphone rotates around the head, the IMU measure-
ments are integrated to obtain the phone’s orientation «. Since we
ask users to face the phone’s screen towards their eyes, a should
be exactly equal to the polar angle 6 (illustrated in Figure 10(a)).
Over time, the phone orientation and the polar angle change,
denoted as §; and «j, i = 1,2,...,N.

2. Using the measured acoustic channels, and pretending we know
the head parameters E, we can localize the phone and map it to
the polar angle 0;(E).

3. When the parameters E are correct, the «; and 0; should match
Vi=12,...,N.

4. Due to noise in IMU and acoustics, we minimize the squared error
la — 6]|? with decision variables as E:

N N 2
Eopt = arggnin( Z 512) = arggnin Z (ai - Hi(E)) (2)

i=1 i=1
With larger N, i.e., more measurements from the user, the Eopt
converges better.

P
(phone)

« Potential
—~ Phone Loc.

Front

Potential

Back
ac Phone Loc. B

Figure 10: Near-field localization illustration. (a) Illustration of
symbols. (b) Localizing phone using absolute diffraction path length
from two ears.
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Estimating Polar Angle 6;(E) in Step 2 above:

Estimating a from IMU readings is a straightforward gyroscope
integration. However, phone location and angle 0; from the acoustic
model is slightly more involved. Assume ¢; and t; are the diffraction
path delays (first tap delays) for signals that arrive at the left and
right ear, respectively. Now, assuming we already have the head
parameters E, then we can draw 2 trajectories (as shown in Fig-
ure 10(b)). The first one is the trajectory of points from which the
diffraction-based delay to the left ear is ;. The second trajectory is
the one from which the diffraction-based delay to the right ear is
t2. The phone’s location must be at the intersection of these 2 tra-
jectories. From the figure, we can observe that the two trajectories
actually intersect at two points A and B, with polar angles 04 (E),
0B(E), and polar radius r4, rg. To disambiguate, we will pick the
O(E) that is closer to the IMU angle estimation . By plugging 6(E)
and « into the above Equation (2) and performing the optimization,
UNIQ derives the optimal head parameter Eo ;.

As a final step, we combine the IMU and acoustic localization results
to obtain the estimated location of the phone as

P(¢i,ri) = P((6i(Eopt) + i) /2,1) 3
By indexing the measured HRTFs with the estimated phone lo-
cations, we complete the near-field HRTF estimation at discrete

sample points. To obtain a continuous near-field HRTF, we employ
interpolation.

4.2 Near field HRTF interpolation

It is difficult for a user to rotate the phone in continuous trajectories
around their head. Thus, we allow users to position the phone at as
many convenient locations as possible, and interpolate across other
locations (shown in Figure 11). Interpolation is crucial because (1)
downstream applications may intend to place sounds in any arbi-
trary location in the near-field; (2) as we will see soon, continuous
near-field HRTF aids in synthesizing the far-field HRTF.

Locations

S Measured Front | J
¢ |

I

I

1

Interpolated
Locations

R

Q-

Figure 11: Near-field HRTF (linear) interpolation

:
i
0

The idea behind near-field HRTF interpolation is actually simple. If
available measurements are from polar angles ¢1, ¢z, ...¢n around
the head, the interpolation module basically takes adjacent near-
field HRTFs and linearly interpolates for all angles between ¢; and
¢i+1. Of course, the HRTFs from ¢; and ¢;;1 need to be aligned
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carefully along their first taps before the interpolation; otherwise
spurious echoes will get injected into the HRTF. To this end, we
convert the HRTFs into the time domain impulse responses (i.e.,
HRIRs), align them, and interpolate. Finally, observe that for a given
interpolated location L and HRTF Hj, we can partly assess the
quality of interpolation (i.e., by modeling the diffraction from the
known head parameters E and the location L). If the interpolated
HRTF deviates from this model, we adjust the channel taps to
match the expected time-difference and the amplitudes. These tuned
channels for every angle [0, 180] is converted back to the frequency
domain, and declared as the final near-field HRTF.

By now, we have covered the system design for measuring the
personalized near-field HRTF for a given user. Building on this,
we will then show how we estimate the far-field HRTF from our
near-field estimations.

4.3 Near-far conversion

Recall from Figure 7 that for a given angle 6, the near and far-field
HRTFs are not the same. The goal of this module is to synthesize the
far-field HRTF from near-field measurements. Our observation is
that the far-field sound arrives to the ears as parallel rays (Figure 12),
while the near field sound — behaving as a point source — emanates
rays in all directions (Figure 13). This means the far field sound
rays are actually contained in the near field measurements. The
challenge lies in decomposing the near-field signals and extracting
out the appropriate rays. An accurate solution to this problem is
complex and computationally heavy because decomposing entails
searching in a high dimensional space. We develop a heuristic
based on first-order diffraction models and the physics of signal
propagation. Our intuition is to understand directions from which
far-field rays would arrive, and identify near-field locations that lie
on those rays (see Figure 12). We elaborate with an example next.

Far field
source

A (Near field
trajectory)

Figure 12: Near-far conversion: near-field HRTF on different part
of trajectory A would contribute to far-field HRTF at different ears.

Figure 12 shows a roughly circular trajectory (A) on which we have
estimated near-field HRTFs. Suppose we want to synthesize the far
field HRTF arriving from angle 6 as shown in the figure. The signal
paths from the far-field, or rays, arrive in parallel, intersecting with
the trajectory A at different locations (e.g., B, C, D) Now, let us
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define several “critical” rays: ray B — L that arrives at the left ear,
ray D — R that arrives at the right ear, and ray C — Q (also arriving
from angle 0) is perpendicular to the tangent on the head at point
Q. Our observation is that the physics of wave propagation dictates
which rays will arrive at which ear. In other words, the incident
signal will diffract along a direction that deviates least from its
original direction. Hence, rays arriving on the left of Q (i.e., ones
passing through the arc [C, B]) will diffract towards the left ear
due to the curvature of the ellipse. Rays impinging the right of Q
(i.e., passing through the arc [C, D]) will propagate towards the
right ear. And signals on the outer side of B and D will not arrive
at either ear.

Building on this intuition, observe that near-field HRTF measured
from locations in arc [C — B] can help synthesize the far-field HRTF
at angle 0 at the left ear. Similarly, near-field HRTF from arc [C— D]
would contribute to the far-field HRTF on the right ear. Thus, UNIQ
approximates the far-field HRTF for the left ear as an average of
near-field left-ear HRTFs from locations in [C — B]; for the right
ear, average is from [C — D]. The method repeats for each value of
0 € [0, 180], meaning that B, C, and D would change accordingly.

Additional attempts on near-far conversion

While the above approach yields encouraging results, it is admit-
tedly a heuristic. We have been exploring relatively deeper ap-
proaches, and while we have not succeeded yet, we discuss two of
them here. We believe these are rich topics of future work.

Our approach is aimed at decomposing the components of near-
field measurements - both diffraction and multipath from each
arrival angle — and then aggregating a subset of these components
to synthesize the far-field effect. Figure 13 aims to explain this
systematically. When transmitting from the near-field, the sound
source should be considered as a point source, emitting rays in
different directions 6y, 62, ..., 0. Let us focus on a single point X}
on the near field trajectory. Our measured near-field HRTF for
point X}, is essentially the sum of the effects from all the signal rays
emanating from X}, hence can be modeled as:

N
Hpear(Xi) = ) H(X 07) (4)
Now if we want to synthesize far-fiéld signals from direction 6;, we
need to select only the 6;-bound rays from each of the points on
the near field trajectory (as shown by the yellow arrows in Figure
13). We can write this synthesize process as:

M
Hyar(0)) = ) H(X;, 0)) (5)
i=0
Evidently, if we can decouple the RHS of equation 4, and obtain
H(X}, 0;) for any given k, i, then we can recombine and find the
Hfar(0)) in equation 5 (of course we still need to tune the delay
of each ray based on geometry). Hence, the core research question
pertains to correctly performing this decomposition.

m Attempt 1: speaker beamforming: Modern smartphones have
2 speakers (one for the left channel and one for the right). If we
can utilize these 2 speakers to create a time-varying beamforming
pattern, this could help estimate H(Xg, 6;). Specifically, denote the
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Figure 13: Near-far conversion attempts: if we can decouple near-
field HRTF into rays, then far-field HRTF essentially needs to ex-
tract out one ray from each near-field location and recombine with
appropriate weights.

beamforming pattern at one time instance as w(6), which is a
function of angle 6. Then we can rewrite Equation 4 as

N

Hnear (X¢) = ), w(6)) - H(X, 0;) (©)
i=0

By creating time varying beamforming patterns w;(6) — by chang-
ing the relative phase and amplitude of the 2 speakers — we can
generate multiple equations, one for each time instance. This could
enable us to solve for H(Xp, 0;). The difficulty, however, is that the
2 speakers are unable to create a spatially narrow beam pattern.
This eventually leads to the system of equations being ill-ranked
and causes large errors for the estimated H (X, 0;).

m Attempt 2: blind decoupling: The net effect of H(Xk, 6;) on
each signal ray has 2 components. First, the diffraction around the
head creates a delay and attenuation. Second, the signal bounces
from the pinna, creating an effect we call the pinna multipath.
Hence, the net effect on each signal ray can be expressed as

H(X, 0;) = Aid(1;) * hy (7)

where § is the Dirac delta function, 7; is the ray’s diffraction delay,
A; is signal attenuation, and hy. is the time domain pinna multi-
path channel (x denotes convolution here). We plug Equation 7 to
Equation 4, and we can have

N

Hpear(Xi) = ) Aid(zi) * hy ®
i=0

Now, if we can estimate Zf\i 0 Aid(zi) and hy separately, the de-
coupling can be solved. §(7;) can be estimated from diffraction
geometry, but we do not know A; and h. This becomes a blind
decomposition problem. While sparsity opportunities could help
solve this problem, we realize that our physics based signal model
may be inadequate to capture the sophisticated real-world signal
propagation patterns. We believe machine learning techniques are
relevant here; we leave that to future work.
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4.4 Interface to Applications

The near and far-field HRTFs estimated by UNIQ can now be ex-
ported to earphone applications as a lookup table. The table is
indexed by 6, and for each 0;, there are 4 vector entries:
0: (Hychy » Hycy )+ (HET! HZS)
Each HRTF is obviously a channel filter, so when an application
intends to synthesize a binaural sound S from a desired location L,
the application first determines if L is nearby or far-away, and the
angle 0; of the location L relative to the head. If L is far-away, then
the application filters the sound as
Viepe = HE!S, Yoigne = Hyo's

The earphone now plays the two sounds, Y., and Y45, on the
left and right ears, respectively. The user perceives the sound to be
coming from angle 0; from a far-away location. We next present
one potential application that can benefit from the estimated HRTFs.

4.5 Binaural Angle of Arrival (AoA)

Understanding the incoming direction of real ambient sounds (rel-
ative to the user’s head) can enable smart earphones to fuel new
applications. For instance, earphones could serve as hearing aids,
and beamform in the direction of a desired speech signal; thus, Alice
and Bob could listen to each other more clearly by wearing head-
phones in a noisy bar. In another example, earphones could analyze
the AoAs of music echoes in a shopping mall and enable navigation
by triangulating the music speakers. Now, to accurately estimate
the AoAs of these ambient sounds, the earphones need to apply
the HRTF (since conventional AoA techniques are not designed
to cope with the HRTF distortions). This motivates HRTF-aware
AoA estimation, with both unknown source signals (such as Alice
and Bob’s speech) and known signals (such as those from ambient
acoustic speakers).

® Known source signals: If the source signal is known, we first
extract the acoustic channels from the left and right ears. To now es-
timate AoA, we look for the following 2 features from the channels:
(1) the first tap relative delay between left and right channels, and
(2) the shape of the time-domain channel. Observe that (1) is im-
pacted by head diffraction and (2) is related to the pinna multipath,
both embedding information about the signal’s AoA. As mentioned
in Section 2, both these features vary across humans. This is why
the personalized HRTF is helpful here. We match these 2 features
from our measured channel against our estimation HRTF(6) — the
0 that maximizes the match is our AoA estimate.

Mathematically, let ¢ be the relative first tap delay from our bin-
aural recording, and t(0) be the same relative delay but for the
personal HRIR templates estimated for each 6. Also denote cr,(0)
and cg(6) as the correlation values for left/right channels with
(left/right) HRIR templates for all . We define a target matching
function T that contains both relative delay and channel correlation
information:

T(6) = Alto — t(0) + [1 = cL(0)] + [1 — cr(6)] ©)
After training for the appropriate A, we find the actual AoA by
minimizing the target function.
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® Unknown source signal: For unknown source signals, we can
no longer extract the 2 acoustic channels for left and right ears,
making it difficult to find the relative first tap delay, or left/right
channel shape.

However, we still have the opportunity to infer the first tap delay
from the relative channels between the left and right ear-recordings
— this can help estimate the AoA.

Of course, this is not straightforward since signals arriving at both
ears contain a lot of pinna multipath, and thus have poor auto-
correlation. This will cause multiple peaks in the relative channel,
as shown in Figure 14. Let us assume each peak has a relative delay
At;. Based on our diffraction model, each relative delay At; can
further translate into 2 AoAs: AoA; 1 and AoA; 2 (one for front and
one for back). Now our task is to find the true AoA from all the
potential AoAs.

The key idea for disambiguating is to still utilize the time domain
shape of the channel. Since we cannot extract the left or right
channel, our key intuition is to compare the shape of the "relative"
channel. Suppose the left ear recording is L, and right ear R, in
the frequency domain. Then the relative channel is %. We can

also calculate the relative channel for all angle 6 in the personal

HRTF template %}%EZ; .

channels should match:

Ideally, for the correct 0, these 2 relative

L _ HRTF(0)
R~ HRTFg(0) (10)

Since division are sensitive to errors when the denominator is small,
we change Equation (10) into a multiplication form:

L x HRTFg(6) = R x HRTF; (6) (11)

By plugging all the potential AoA;’s (inferred from relative channel
peaks) into the above equation, and finding the one that gives the
closest LHS and RHS, we identify the true AoA.

1 : :
o — Relative Channel|
©
=
=
S
<
- . : :
0 1 2 3

%107

Figure 14: Relative channel between left and right ear:
there are multiple channel taps due to poor signal auto-
correlation.

Time

By now, we have covered the key system design ideas. We will then
show some system details.

4.6 Engineering and System Details

m System frequency response compensation: Before perform-
ing HRTF measurements, the first step is to compensate for the
frequency response of the speaker and microphone pair. This is
important because any channel we estimated would intrinsically
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embed this frequency response inside. We estimate frequency re-
sponse of the speaker and microphone pair by placing microphone
co-located with speaker and play a flat amplitude chirp signal.

m Tackling room reflections: The traditional approaches to HRTF
measurement are conducted in echo-free acoustic chambers. Home
users obviously do not have access to such “anechoic” chambers.
However, we can eliminate room-level echoes as a pre-processing
step in UNIQ. The idea is simple: when users rotate the phone
around their heads, head diffraction and pinna multipath should
arrive earlier than room reflections. We eliminate the latter channel
taps to exclude room reflections.

B Automatically correcting user gestures:

A user may not be able to rotate the phone around the head in the
very first attempts; practical problems can occur such as the arms
lowering, the phone spinning, etc. This can affect measurement
and downstream accuracy. UNIQ identifies such cases by detecting
that the estimated phone distance to head center r; in Equation
(3) is too small, or the overall error Zfi 1 5i2 in equation (2) is too
large. This triggers a message to the user to redo the measurement
exercise. With this, we are ready to move to system evaluation.

5 EVALUATION

Figure 15 shows our system setup. UNIQis implemented on a Xiaomi
[11] smartphone and a Sound Professionals earphone (model: SP-
TFB-2) [1], which supports in-ear microphones. In-ear microphones
are becoming popular and can improve the HRTF quality since the
sounds will be recorded closer to the ear-drum. Since our phone
does not have a front-facing speaker, we connect the audio output
to a small external speaker. User wears the earphone and rotates
the smartphone (with pasted speaker) around her head.

In-ear Mic.

Phone and
Speaker

74

Figure 15: System prototype. Left: experimental setup. Right:
zoom in to in-ear microphone

During the measurement process, we collect 100Hz IMU data from
the phone, and 96kHz sound recording from the in-ear microphone.
The speaker, microphone, and IMU are all synchronized. The data
processing pipeline runs on MATLAB. The ground-truth data for
smartphone (and head) locations are obtained from an overhead
camera installed on top of the user’s head.
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Figure 16 shows the frequency response of our speaker microphone
pair. The response curve is unstable below 50Hz and stabilizes
reasonably over [100Hz, 10kHz]. This shows that our hardware is
not anything special; in fact, expensive phones and headphones
may exhibit better frequency response curves. Finally, given that
human ears are insensitive to sound below 100Hz [13], any standard
hardware platform should be adequate to run the UNIQ system.

B)

Amplitude (d
5

[— Frequency Response|

107 10° 10
_ Frequency (Hz)
Figure 16: Frequency response of our speaker-microphone

pair. Most hardware platforms exhibit such response curves,
if not better [31].

5.1 Results

Phone Localization Accuracy

Figure 17 plots the phone localization angular error in near-field.
The X-axis in Figure 17(a) plots the ground-truth polar angle of the
phone as viewed from the overhead camera. The Y-axis plots UNIQ’s
estimate of the polar angle as the user rotates her hand. Perfect
accuracy would mean that the plotted points would like on the X =
Y diagonal line. Evidently, UNIQ’s localization is consistently quite
accurate. Figure 17(b) plots the CDF; the median error is 4.8 degrees.
The error is mostly due to the difficulty of ensuring the phone’s
center is perfectly facing the user’s own head. Imperfection of the
acoustic diffraction model also partly contributes to the errors, but
less significantly. Only in rare cases, the phone’s localization error
climbs to 15 degrees because the volunteer’s movement has deviated
too much from the instructions. This adds to the downstream errors,
however, wee include these cases since they are a part of real-world
operating conditions.
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Figure 17: Phone’s angular error for hand-rotation: (a) com-
parison with ground truth, (b) error CDF.
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Personalized HRTF Estimates

The HRTF is a vector that completely embeds the head/pinna’s
acoustic impulse response. An objective way to evaluate HRTF
estimate is to cross-correlate personalized HRTF vector with ground
truth. This will reveal how closely UNIQ matches the truth. Further,
plotting correlation between ground truth and global HRTF will
also reveal the improvement of personal over global HRTF.
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Figure 18: Cross-correlation between ground-truth versus
UNIQ, global, and another measurement of ground-truth
HRIR, for (a) left ear, (b) right ear.

Figure 18 shows the cross-correlations between estimated and gen-
eral HRIR against the ground-truth HRIR (error bars represent
standard division). We also show the cross-correlation between 2
separate measurements of ground-truth HRIR as a reference upper
bound. Figure 18(a) plots for the left ear, and Figure 18(b) for the
right; in both cases, the sound source was placed on the left of
the head. Evidently, UNIQ’s estimated HRIR achieves an average
correlation of 0.74 and 0.71 for the left and right ear, respectively.
In contrast, the general HRIR can attain average correlation of 0.41
for both ears. This is a key result, illustrating that:

1. Global HRIRs significantly differs from personalized ones.
2. UNIQ considerably closes this gap (by a factor of ~ 1.75X)

For the right ear, our estimated HRTF exhibits higher accuracy
when the angle is ~0 or ~180 degrees, but degrade around ~90
degrees. This is because when the phone is at 90 degrees, the right
ear microphone is exactly at the opposite side of the speaker, sig-
nificantly suppressing the SNR of the received signal, resulting in
lower accuracy. Higher quality earphones would certainly benefit
in these cases.

Variation across Different Volunteers

Figure 19 shows the mean correlation for 5 volunteers (who wore
the earphones and performed the smartphone rotation in front of
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their head). The two graphs - (a) and (b) — are again for the left and
right ear, respectively. The personalization gain is consistent across
all. Of course, UNIQ estimates the HRTF slightly less accurately
for volunteers 4 and 5 compared to volunteers 1, 2, and 3. This is
because when holding the phone, volunteers 4 and 5 moved the
phone a bit too close to the back of their heads, due to their arm
movement constraints, (even after automatic correction procedure
of UNIQ), leading to sub-optimal estimates in the diffraction model,
and downstream far-field estimations.
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Figure 19: Average cross-correlation between estimated /
global HRIR and the groundtruth across different volun-
teers for (a) left ear, (b) right ear

While the above results are statistical, Figure 20 zooms into few
raw HRTFs in the time domain (called head related impulse response,
HRIR). Specifically, the figure shows the (a) best case, (b) average
case, and the (c) worst case estimation of UNIQ’s HRIR in compari-
son to the general HRIR. Evidently, across all 3 cases, our estimated
HRIRs always decode the channel taps at correct locations; the
general HRIR makes frequent mistakes. This is primarily due to
UNIQ’s ability to capture per-user head and pinna multipath, which
are obviously different from one human to another.

Application of HRTF to AoA

A more accurate HRTF implies that ambient sounds can now be
better analyzed spatially, such as a hearing aid identifying the
direction of an incoming sound. We put this to test by comparing
the AoA error when applying the personalized HRTF from UNIQ,
versus the global HRTF. We begin by playing a known source signal
(from different locations in the far field) and estimating AoA.

Figure 21 plots the CDF of angular AoA error. With UNIQ’s person-
alized HRTF producing a median error of 7.8°, compared to global
HRTF’s median error of 45.3°. More importantly, the maximum
error of personalized HRTF is 60° while the maximum for global
HRTF is > 150°. This is because a global HRTF suffers considerably
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Figure 20: Sample example HRIRs for (a) best case, (corr =
0.96), (b) average case, (corr = 0.85), (c)worst case, (corr = 0.43).
Global HRIRs almost always inferior.
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Figure 21: AoA estimation with personalized and global
HRTF using a known source signal. Global HRTF performs
poorly since measured signals deviate from HRTF estimate.

from “front-back ambiguity”, i.e., it does not reliably differentiate
between sounds arriving symmetric front and back angles, such as
45° north-east and 45° south-east. In fact, in 29% of our experiments,
using global HRTF caused a front-back confusion.

We repeat the above experiments with unknown source signals,
such as when Alice calls Bob (and Bob is wearing a hearing aids
or earphones). Alice’s voice signal is unknown to Bob’s device,
however, the ear-devices can still decode Alice’s direction better.
We tested with a variety of “unknown” signal categories, such as
white noise, music, and speech. Figure 22(a)-(c) shows the CDF
of AoA error for each of these categories. The personalized HRTF
offers consistent gains across all types of signals; the distribution
has a somewhat heavy tail because, with unknown signals, the front-
back ambiguity begins to affect UNIQ as well. The 80 percentile AoA
error with personalized HRTF is within 20° for music and white
noise. The improvement with speech is smaller because speech is
dominated by lower frequencies, thus less sensitive to HRTF errors.
Figure 22(d) zooms into the front-back cases, since these are crucial
for real applications (we do not want Bob to hear a virtual voice that
comes from a wrong direction). With UNIQ, the average front-back
accuracy is 82.8% — white noise is highest at 87.2% and speech
signals are lowest at 72.8%. This is because white noise spans over a
large frequency range, offering more information about the acoustic
channel; in contrast, speech signals are concentrated on base and
harmonic frequencies, revealing less information about the channel.
For global HRTF, the front-back accuracy is 59.8%.
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Figure 22: (a)-(c): AoA estimation error, (d): front-back identification accuracy for an unknown source signal.

6 RELATED WORK

m Smart earphones and earable computing: With the develop-
ment of mobile computing technologies [19], smart earphones are
becoming popular these days. Past works have looked at enabling
spatial audio[18, 21, 26, 51] and acoustic augmented reality [15, 54],
step counting [44] and motion tracking [53], user authentication
[20] and health monitoring [42] on sensor embedded smart ear-
phones. This paper, however, adds another building block - personal
HRTF to smart earphones. We believe this is a step towards even
better functionality on future earables: e.g., more immersive spatial
audio, and smarter beamforming, etc.

m HRTF personalization: HRTF personalization has gained in-
terest in recent years due to the development of VR and AR related
technology. Traditionally people use large speaker arrays inside
acoustic chambers to measure HRTF [17, 22], which is obviously not
scalable. Some newer work [27, 29, 33, 36, 45, 58] tried to approach
this problem without acoustic hardware from the pure signal pro-
cessing perspective. They used acoustic simulation to generate the
specific personalized HRTF for a given user from 3D scans of human
head. These methods are reported to be slow and computationally
heavy [28]. Moreover, obtaining an accurate 3D scan is also not easy
[57]. Few attempts utilize mobile devices for HRTF measurement.
[12] is the closest to our work. Their method, however, requires
an external speaker placed on the table, and need to user to tie the
smartphone onto the head, which is not portable. Moreover, their
setup can be polluted by environmental multipath. Our approach,
on the contrary, is novel, fast, and scalable. Users can get their
personalized HRTF by simply rotating the phone around the head,
in a couple of minutes.

m Acoustic/wireless sensing and sound source AoA estima-
tion: Acoustic/wireless sensing and sound source AoA estimation
is a hot research topic in mobile, acoustic, and robotic community
[23, 24, 34, 35, 37, 39, 41, 43, 47, 56]. Most past works require a
mic array for sound AoA estimation [46, 48, 50]. [18, 30, 32] are
the closest to our work, where the authors attempted to estimate
sound AoA from artificially made robotic ears. Our problem is more
challenging because past authors can design the robot head and
ear entirely by themselves thus have full control and understand-
ing of the accurate robot HRTF. In our case, we need to find the
sound source AoA by extracting features from the not-so-accurate
estimated HRTF, which brings about unique challenges.

7 LIMITATIONS AND OPEN PROBLEMS
m 3D HRTEF: Our UNIQ prototype estimates the 2D HRTF for users.
This may be acceptable, given that human ears exhibit relatively

lower resolution in distinguishing elevation angles. Hence 2D may
suffice for many applications. However, if an application desires
3D HRTF, extending UNIQ is viable — the user would now need
to move the phone on a sphere around the head, and the motion
tracking equations need to be extended to 3D. If this increases the
tracking error, perhaps the phone camera can be utilized, enabling
a fusion between motion, acoustics, and computer vision. We leave
this to future work.

m Integrating Room Multipath: As discussed earlier, UNIQ re-
moves environmental reverberations through a pre-processing step
in the time domain; this helps minimize the effect of room mul-
tipath on the estimated HRTF. However, rendering realistic 3D
audio, especially in an indoor environment, requires that the room
reverberations be embedded into the HRTF. Said differently, a real
immersive experience can only be achieved by filtering the ear-
phone sound with both the room impulse response (RIR) and the
HRTF. Estimating RIR at home is an interesting but separate re-
search question, outside the scope of this paper.

m User Experience and Externalization: An estimated HRTF
is accurate when the user is unable to correctly identify whether
the sound she hears came from her earphone or an ambient loud-
speaker. When she mistakes an earphone-played sound to be com-
ing from the ambience, then the ideal goal of “externalization” is
achieved. Of course, testing for externalization requires high quality
earphone hardware and RIR integration. Moreover, optimization
methods may be needed through human feedback, since external-
ization is also a complex function of human perception [14]. This
paper shows that our estimated HRTFs are mathematically close to
true HRTFs, but more work is needed to attain externalization.

8 CONCLUSION

The gap between global and personalized HRTFs remains an open
problem. This paper ushers ideas from motion tracking and sensor
fusion to partly close this gap. We show that simple arm gestures
from users can offer valuable motion information, that in turn helps
in modeling the user’s unique HRTF parameters. As a side effect, we
find that earphones can better estimate the AoA of ambient sounds.
The results are promising and could underpin a range of immersive
applications that are gaining relevance for the post-COVID future.
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