
QuickSense: Fast and Energy-Efficient Channel
Sensing for Dynamic Spectrum Access Networks

Sungro Yoon†, Li Erran Li⋆, Soung Chang Liew∗,

Romit Roy Choudhury‡, Injong Rhee†, Kun Tan◦

North Carolina State University† Bell Laboratories⋆

Chinese University of Hong Kong∗ Duke University‡ Microsoft Research Asia◦

Abstract—Spectrum sensing, the task of discovering spectrum
usage at a given location, is a fundamental problem in dynamic
spectrum access networks. While sensing in narrow spectrum
bands is well studied in previous work, wideband spectrum
sensing is challenging since a wideband radio is generally too
expensive and power consuming for mobile devices. Sequential
scan, on the other hand, can be very slow if the wide spectrum
band contains many narrow channels. In this paper, we propose
an analog-filter based spectrum sensing technique, which is much
faster than sequential scan and much cheaper than using a
wideband radio. The key insight is that, if the sum of energy
on a contiguous band is low, we can conclude that all channels
in this band are clear with just one measurement. Based on this
insight, we design an intelligent search algorithm to minimize
the number of total measurements. We prove that the algorithm
has the same asymptotic complexity as compressed sensing while
our design is much simpler and easily implementable in the
real hardware. We show the availability of our technique using
hardware devices that include analog filters and analog energy
detectors. Our extensive evaluation using real TV “white space”
signals shows the effectiveness of our technique.

I. INTRODUCTION

The exponential growth of mobile data is a major challenge

to the operators of cellular networks, who expect that mobile

data in their networks will grow 18-fold by 2016 [1]. As a

result, many operators face a severe spectrum shortage, dubbed

a spectrum crunch [2], if the problem is left unaddressed.

Aware of and keen to resolve the problem, the US government

has set the goal of freeing up 500 MHz of spectrum for

wireless communication [3]. A large portion of this will have

to come from incumbents. Some incumbents may only allow

their spectrum to be used while they are not using it. This

demands innovative dynamic spectrum allocation and access.

One fundamental problem in dynamic spectrum access

(DSA) networks is to obtain the spectrum map, the occupancy

of all channels and their usage overtime, as shown in Figure 1.

The spectrum map provides DSA devices a global view on

entire frequencies, thus contributing to the best selection of

channels. For example, a DSA device in need of a reliable

connection can pick a channel that has been the least interfered

in the past. Another device, that prefers more link bandwidth,

can try channel bonding [4] and choose a channel with

more available neighboring frequencies. There are two known

approaches to building the spectrum map. One is to query

a geo-location database on occupied channels in a particular

location; the other is to let DSA devices sense a wide band of
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Fig. 1. Wideband spectrum sensing problem: determine X = [x0,x1, · · · ,xN−1]
where xi = 1 if Channel i is occupied, and 0 otherwise.

radio frequency and survey the occupancy.

Spectrum sensing is an essential technique for DSA net-

works. Even though the FCC has mandated the geo-location

database approach for secondary users [5], spectrum sensing

helps in the following settings. First, the current geo-location

database does not provide any information about other sec-

ondary users within the area. Thus, there are no means to

arbitrate among multiple DSA devices in the same location.

Second, the geo-location database can only approximately

predict the signal reception quality at a location and could be

inaccurate. While the geo-location database approach relies

on certain propagation models for the prediction, e.g., [6],

due to the complexity of radio propagation and the chang-

ing environment, the prediction model might not provide

fine information. Finally, accurate and fast spectrum sensing

technologies can help increase the spectrum efficiency. For

example, a secondary user can opportunistically use a channel

during the time interval between primary users’ transmissions

when a short silence is detected. Recently, President’s Coun-

cil of Advisors on Science and Technology (PCAST) has

published a report in which use of the spectrum sensing is

recommended [7]. Standard bodies such as 802.22 [8], IEEE

SCC41, and companies [9] have already started working on

such spectrum sensing technologies.

The channel sensing is challenging because the entire search

space is very large. Recent measurements [10] reveal that, in

the band between 30MHz and 3GHz, there are at least several

hundred spectrum holes, each of which more than 2MHz wide.

In the future many of these spectrum holes will be subject to

dynamic spectrum access.

However the current spectrum sensing techniques have clear

limitations. One is the sequential scan approach, e.g., used in

WiFi, that investigates all of the narrow band channels one

by one, trying to detect the signal energy or the existence

of specific signatures [11]. But this approach is not scalable

as it always requires N searches, where N is the number of



channels. Another possible approach is to perform wideband

scan using an advanced device such as high performance

analog-to-digital converters (ADCs). But the high speed ADC

is very expensive, power consuming and requires extensive

computation for the signal processing [12]. For example, in

order to detect 500MHz bandwidth 1 Giga samples per second

ADC is required that consumes 2.15W and costs $775 [13].

Thus this wideband scan is not suitable for mobile devices that

have limited energy. Recent proposals adopt the compressed

sensing technique for wideband spectrum sensing [14], [15].

These proposals perform sub-Nyquist sampling and achieve

O(k · logN) searches where k is the sparsity of the spectrum.

However, prior knowledge of k is usually required, which is

not feasible in DSA networks where mobile devices frequently

join and leave. In addition, the compressed sensing requires

dedicated hardware architectures [16], [17]. To the best of

our knowledge, there is no low-cost implementation of the

compressed wideband sensing.

In this paper, we propose a fast, low-cost and energy-

efficient way of wideband sensing. The key insight is that

consecutively located clear channels produce nearly zero sig-

nal energy, regardless of their total bandwidth. Therefore, it

is not necessary to scan through all the narrow bands one

by one within the clear channels. It just suffices to probe

the energy level of an entire target bandwidth with one time

measurement. One can skip looking into that bandwidth if

no significance in the energy has been observed. Only if some

energy has been detected, do we zoom in to measure energy at

finer granularities. We deliberately choose analog hardware as

the basic building block for our technique. Low-pass filters are

used to adjust the target search bandwidth: the wideband signal

filtered through the analog filter is separated at various sub-

bands. Then we use energy detectors to measure the energy

of each sub-band. We refer to our solution as QuickSense.

QuickSense builds upon an intelligent algorithm and the

accompanying hardware design. We show that QuickSense

achieves O(k · logN) searches on average, which is asymp-

totically the same searching speed as compressed sensing,

and N searches in the worst case. But unlike compressed

sensing, QuickSense is easily implementable and operates at

any sparsity of the spectrum. We test the availability of our

hardware design via the proof-of-concept experiment where

off-the-shelf hardware is used. It shows that QuickSense can

perform an efficient spectrum sensing in the real-world setups.

We collect TV signals from UHF whitespaces and perform

extensive trace-driven simulations to evaluate the performance.

The results show that our technique can perform up to 3.4
times and 1.5 times fast searching when 10% and 30% of the

channels are occupied, respectively. This saves up to 70.6%

and 33.3% energy.

The rest of the paper is organized as follows. In Section II,

we introduce our QuickSense algorithms and the hardware

designs. In Section III, we discuss several additional issues.

In Section IV, we present the proof of concept experiment and

the trace-driven simulation. We discuss related work in V and

conclude this paper in Section VI.

II. QUICKSENSE: ANALOG-FILTER-BASED SPECTRUM

SENSING

In this section, we first define wideband spectrum sensing

problem. We then propose a basic algorithm that uses a single

tunable analog filter and an analog energy detector. After that,

we present an enhanced algorithm that uses log2(N) number

of fixed-bandwidth analog filters and analog energy detectors.

For each algorithm, we provide the matching hardware design.

A. Problem Statement

Consider a spectrum consisting of N channels (subcarriers)

each having fixed bandwidth as shown in Figure 1. Let variable

xi ∈ {0,1} be an indicator that specifies whether Channel i

is occupied or not. We first consider the basic problem of

determining all the values of xi, ∀i = 0,1, · · · ,N −1.

Let Pi be the power sensed on channel i. Let Thi be the

energy detection threshold on channel i. We have xi = 0 if

Pi < T hi, 1 otherwise. The threshold Thi can be set according

to [18]. The noise power spectral density needed does not

change very fast, so we can obtain this through infrequent

measurements. We will look into the threshold setting in

Section II-D.

Let fi denote the left end of the frequency band of channel

i. We have a frequency filter that we can position over the

interval [ fi, fi+b] to separate the signal within the frequency

band. We can set i and b arbitrarily.

After filtering and measurement, we can then obtain the

signal power within the band: P[i,i+b−1] = Pi + Pi+1 + · · ·+
Pi+b−1. Let Th[i,i+b−1] be the corresponding energy detection

threshold. We can decide as follows: if P[i,i+b−1] < T h[i,i+b−1],

then x j = 0 for all j ∈ i, · · · , i+b−1. Otherwise if P[i,i+b−1] >
Th[i,i+b−1], then x j = 1 for one or more j ∈ {i, · · · , i+b−1}.

For the second case, all we know is that there exists at

least one occupied channel between 1 and b. In particular,

the transmitting stations may be at different distances to

our detector so the value of P[i,i+b−1] does not tell us how

many stations are transmitting. By using the filter to make a

sequence of successive measurements, we want to derive xi

for all i ∈ 0, · · · ,N −1. Our goal is to minimize the number of

measurements needed.

In general, there are 2N possible combinations for X =
(x0,x1, · · · ,xN−1). This means that N bits of information is

needed to describe the spectrum usage profile. Thus, to derive

the profile information, N measurements will be necessary in

general. This is due to the fact that each measurement gives

one bit of information, either x j = 0 or x j = 1. However, as

indicated by work in the arena of compressed sensing, when

Z = [P0,P1, · · · ,PN−1] is sparse (i.e., there are many low energy

readings in the vector), we can do much better. In particular,

if we can make a series of measurements consisting of linear

combination of P, as embodied by AZ =Y where A is a matrix

representing m linear combinations in m measurements Y , then

it is only necessary for m to be of order k log2(N/k), provided

that Z is k-sparse (i.e., there are only k readings in Z that are

above noise power).



The problem is that we do not have a ready way to

implement the measurement matrix A, so we cannot fit our

problem within the above traditional framework of compressed

sensing. In the worst case, we may end up having to make

order N filtered measurements all the time just to construct

the linear combinations.

The issue is whether we can construct an alternative algo-

rithm in which the number of measurements is O(N) in the

worst case, yet O(k log2(N/k)) when the vector X is sparse.

In particular, we would like the algorithm to be robust and

near optimal for different levels of sparsity.

B. Basic Algorithm

We now outline a basic algorithm based on a combination

of linear search and bisection search, which is linear and

logarithmic in complexity, respectively.

This basic design is based on a specific hardware com-

ponent, tunable channel filter (tunable in terms of band-

width) [19]. For now we assume that the tunable filter is

available and it can completely separate out the only channels

of interest. Then an energy detector can be used for the filter

output to determine if a certain bandwidth is occupied.

The basic idea is that when P[i,i+b−1] is below a threshold,

we can deduce in one shot that xi, · · · ,xi+b−1 = 0. Otherwise

when P[i,i+b−1] is above a threshold, we do not have much

information. In this algorithm, the linear part consists of

the identification of contiguous xi that are all 1’s; and the

logarithmic part consists of the identification of contiguous

0’s. With many zeroes (the sparse case), the logarithmic part

begins to dominate and the algorithm becomes efficient.

In more detail, as shown in Figure 2, the algorithm starts

to find the first band of contiguous 0’s. If x0 = 0, then the

algorithm measures P[1,2]. If P[1,2] is small, the algorithm

doubles the measurement interval again to measure P[3,6]. If

P[3,6] is greater than noise power, then the algorithm contracts

the measurement interval by half to measure P[3,4] and so on.

This binary search procedure is implemented by a recursive

function identi f yZeroes(i,d). The function returns an integer

j, such that xi, · · · ,xi+ j−1 are all zeroes and xi+ j = 1. If the

returned j = 0, then the implication is that xi = 1, and no

zeroes are identified. The parameter d is such that [i, i+d−1]
is the initial interval to be explored. The returned j, however,

can be less than or equal to d.

Once the algorithm identifies the first 1 after the first

contiguous 0’s, it begins the linear search to identify the first

contiguous 1’s. This is done by the function identi f yOnes(i).
The function returns an integer j, such that xi, · · · ,xi+ j−1 are

all 1’s and xi+ j = 0. If the returned j = 0, then the implication

is that xi = 0, and no 1’s are identified.

Example: As shown in Figure 3, suppose N = 64 and only

the channel 15 is occupied. The algorithm first identifies

contiguous 0’s by measuring P0, P[1,2], P[3,6], P[7,14], P[15,30].

Since P[15,30] is significant, the algorithm performs binary

search for the occupied channel by shrinking its filter size

and measures P[15,22],P[15,18],P[15,16] and finally P15. Now it

transitions to identify continuous 1’s by measuring P15 and P16.

01. initialize i,j to zero and the spectrum profile X to all zero,
02. N is the total number of channels in the band.
03. Measure the noise power and set the threshold value.

04. while (i < N) {
05. j=identifyZeroes(i,1);
06. set X [i, i+ j−1] = 0 and xi+ j = 1;
07. i = i+ j+1;
08. if (i < N) {
09. j=identifyOnes(i);
10. set X [i, i+ j−1] = 1 and xi = 0;
11. i = i+ j+1;
12. }
13. }

// linear search to find X [i, i+ j−1] with consecutive 1s
14. identifyOnes(i) {
15. int j = 0;
16. while (i+ j < N) {
17. measure Pi+ j;
18. if Pi+ j < Threshold, break;
19. else j++;
20. }
21. return j;
22. }

// binary search to find X [i, i+ j−1] with consecutive 0s
23. identifyZeroes(i,d) {
24. int j = 0;
25. if (i+d > N) d = N − i;
26. measure P[i,i+d−1];

27. if (P[i,i+d−1] ≥ Threshold) {
28. if (d/2 ≥ 1)
29. j = identifyZeroes(i, d/2);
30. else j = 0;
31. }
32. else j = d + identifyZeroes(i+d; 2∗d);
33. return j;
34. }

Fig. 2. QuickSense Basic Algorithm

Since channel 16 is empty, the algorithm again transitions to

identify 0’s by measuring P17, P[18,19], P[20,23], P[24,31], P[32,47],

and P[48,63]. The number of measurements is 13 as compared

to 64 for the linear scan. We show in Section II-B that our

algorithm takes O(k log2(
N
k
)) measurements when the number

of occupied channels k is small.

Hardware design: Figure 4 illustrates the schematic design

of QuickSense. The basic idea of our hardware design is to

bring the wideband signal down to baseband using a voltage

controlled oscillator (VCO) and a mixer. Depending on the

frequency band, we might need a preselector to reject out-of-

band unwanted interference signals. Once we have the signal

in the baseband, we can pass it through a tunable lowpass

filter. The tunable lowpass filter then filters the signal at the

target bandwidth of interest. The filtered signal is delivered

to an analog energy detector (simply consisting of a squarer,

amplifier, and an integrator), which determines the signal

energy level. Then the control unit digitizes the energy reading
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Fig. 3. QuickSense doubles the filtering bandwidth until it detects an
occupied channel. Then it shrinks its filtering bandwidth to find the occupied
channel. Once it finds an empty channel, it increases the filtering bandwidth
again.
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Fig. 4. Basic QuickSense design using a single pair of a tunable lowpass
filter and an energy detector.

(using a very low-rate ADC) which is then used as an input to

the implementation of our QuickSense algorithms as described

in Sections II-B and II-C.

To improve component reuse, QuickSense can be designed

to share the antenna and the amplifier with the DSA radio.

During reception of DSA radio, a copy of the incoming

analog signal is split and fed into the QuickSense module

for building the spectrum map. During transmission of DSA

radio, QuickSense module can be turned off. The QuickSense

module works alongside of DSA radio and does not interfere

with DSA transmission or reception. It can provide spectrum

occupancy profile information to applications or the spectrum

management layer [20] which in turn can instruct DSA radio

to select appropriate channels to use.

Complexity Analysis: We consider a few extreme cases first.

When X is all 1’s, the algorithm is Θ(N). When X consists of

alternating 1’s and 0’s, the algorithm is also Θ(N).
Suppose X is k-sparse. Let where k = ρN where 0 ≤ ρ ≤

1. Let us consider an extreme case where the k non-zero xi

are from 0 to k − 1. Then, the number of measurements is

c1k+c2 log2[(1−ρ)N] for some constants c1 and c2. The term

c1k is the linear part for identification of the 1’s; the term

c2 log2((1−ρ)N) is for the identification of the 0’s. This is

however not the worst case given sparsity.

The worst case is where the k 1’s of xi are not contiguous so

that there are either k−1, k, or k+1 sections of contiguous 0’s.

Note that given sparsity k, it is not possible to have more than

k+1 sections of contiguous zero xi. Let lh denote the length

of section h. The complexity in this case is ∑h c2 log2(lh)
subject to ∑h lh = (1 − ρ)N. Because of the concavity of

log function, the maximum ∑h c2 log2(lh) is obtained when

the lh’s are equal for all h. Therefore, max∑h c2 log2(lh) =

c2(k+1) log2(
(1−ρ)N

k+1 ).

01. initialize i,j to zero and the spectrum profile X to all zero,
02. N is the total number of channels in the band.
03. Measure the noise power and set the threshold value.

04. while (i < N) {
05. j=identifyZeroes(i);
06. set 0 to X [i, i+ j−1] and 1 to xi+ j;
07. i = i+ j+1;
08. if (i < N) {
09. j=identifyOnes(i);
10. set 1 to X [i, i+ j−1] and 0 to xi;
11. i = i+ j+1;
12. }
13. }

// same as the basic QuickSence algorithm
14. identifyOnes(i)

// binary search to find X [i, i+ j−1] with consecutive 0s
15. identifyZeroes(i) {
16. int j = 0;
17. if (i+d > N) d = N − i;
18. BWMax: The maximum bandwidth to be sensed.
19. measure P[i], P[i,i+(21−1)], P[i,(i+22−1)],...P[i,i+BWMax];

20. if (P[i,i+2k−1] ≥ Threshold for 0 ≤ k ≤ log(BWMax) {
21. j = k;
22. }
23. else j = BWmax + identifyZeroes(i+BWMax +1);
24. return j;
25. }

Fig. 5. QuickSense Enhanced Algorithm

Thus, the complexity is the same as that in traditional com-

pressed sensing, except that there is a simple implementation

for our algorithm, whereas directly applying the compressed

sensing framework requires a high-rate ADC and complex

signal reconstruction algorithms.

C. Enhanced Algorithm using Fixed Bandwidth Analog Filters

Performing the search using the single pair of an analog

filter and an energy detector leads to exhaustive search when

the spectrum is densely populated. We advance our design to

deal with such a case. We carefully combine log2N number

of fixed-bandwidth filters and energy detectors such that they

work in parallel and prevent the exhaustive search. Note that

the lowpass tunable filter in the basic design is required to

filter only log2(N) different bandwidths, i.e. 1,2,· · · , log2(N)
times a single channel. Thus, we replace the single tunable

lowpass filter with a log2(N) number of fixed lowpass filters.

With the log2(N) energy readings per each measurement, we

update entries in the spectrum map in parallel (see line 18 in

Figure 5). When the spectrum is sparse, this enhanced design

achieves O(loglogN) searches. The proof is intuitive so we

omit here due to the space limit.

Hardware design: The down-converted signal output from the

mixer is fed into an RF splitter. This RF splitter directs the

RF signal to log2(N) fixed-bandwidth lowpass filters. log2(N)
energy detectors are used to get the energy readings out of each

filter. Figure 6 shows the schematic design of our enhanced
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Fig. 7. Energy readings from empty channels. Filters with 2MHz, 5MHz,
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QuickSense algorithm.

One possible concern is that the number of channels could

be hundreds or thousands. But only log2N devices are needed

(i.e. 10 devices when detecting 1,000 channels). Also the

cost of off-the-shelf analog filters and energy detectors is

already very cheap. For example, AD8310, a high performance

energy detector, costs only $4.62. Costs of lowpass filters vary

depending on their filtering bandwidths, but they are usually

less than $5 (e.g., MiniCircuit’s LFCN-80 is $3.24).

D. Energy Detection Threshold

QuickSense detects energy from variable-bandwidth chan-

nels. It is needed to deal with varying noise power because of

this variable bandwidth. Now P[ j,k], the energy sensed within

channel [ j,k] is given by P[ j,k] = S[ j,k]+Ω[ j,k], where S[ j,k] is the

sum of signal energy and Ω[ j,k] is the background noise within

the channel [ j,k], respectively. The noise energy Ω[ j,k] =

∑k
i= j Ωi grows monotonically with the filtering bandwidth,

k− j+1. With the larger filter bandwidth, an energy detector

will naturally detect more energy due to the noise power. We

measure the noise power in empty channels using a spectrum

analyzer with different lowpass filters. Figure 7 shows the

increasing noise power with larger filtering bandwidths.

Our idea is to learn about Ω j for all 0 ≤ j < N before the

actual channel sensing operation. Then we set Ω[ j,k] as the

energy detection threshold for the channel [ j,k]. As the noise

power varies depending on each frequency, we use the data

structure which we call noise map. The noise map stores the

noise power Ω j for 0 ≤ j < N. The noise measurement can

be done infrequently as the noise power within a frequency

band changes slowly. But for building an accurate noise map,

QuickSense needs to gather enough number of energy readings

per noise measurement. This is due to the randomness of the

noise. In the following, we show analytically how it works.

Let M denote the total number of energy readings and s j the

received signal sample at channel j where s j = x j +ω j . Here,

x j and ω j are complex variables representing the received

signal and the noise, respectively. E[Pj], the average energy

reading at channel j is given as follows:

E[Pj] =
1

M

M

∑ |s j|
2 =

1

M

M

∑ |x j +ω j|
2

=
1

M

M

∑(|x j|
2 + |ω j|

2 + x′jω j + x jω
′
j).

Assume M is sufficiently large such that 1
M ∑M |ω j|

2 = Ω j. As

the two random variables x j and ω j are mutually independent

and E[ω]≃ 0 in AWGN channel, ∑x ·ω = E[x]E[ω]≃ 0. Thus

we have

E[Pj] =
1

M

M

∑ |x j|
2 +Ω j = S j +Ω j.

Now the energy reading P[ j,k] will be given by

P[ j,k] =
k

∑
i= j

E[Pi] = S[ j,k]+Ω[ j,k].

If Ω[ j,k] is known from the noise map, we can detect the signal

energy S[ j,k] accurately. QuickSense assumes that a channel is

occupied if P[ j,k] > Ω[ j,k]. Otherwise the channel is assumed

to be clear. In the above, M is tightly related to the energy

detection accuracy. In Section IV-A2, we experimentally ob-

serve the relationship between M and the energy detection

accuracy. We verify how many energy readings QuickSense

needs to achieve the accurate sensing.

III. DISCUSSIONS

Non-uniform channel width: Each channel might have a

different bandwidth. Our basic algorithm in Figure 2 does not

make any assumption on channel width. So it works with no

change. However, enhanced QuickSense design, which uses

log2(N) analog filters, is no longer valid in this case. It is

required to replace the fixed analog filters with tunable filters.

False negative or false positive detections: QuickSense

basically relies on energy detectors to determine the occupancy

of channels. Here the energy detection threshold establishes a

trade-off between false positive and false negative detections.

In our opinion the false negative is more harmful than the false

positive, as it can interfere with ongoing primary signals. So

the basic policy is to set the threshold conservatively such that

the false negative detection is minimized.

Still, false negatives could be incurred in case primary

signals are very weak, thus letting a device attempt to use an

already occupied channel. In this case accurate narrow band

sensing can be used [11]. These methods are complex and

require the knowledge of underlying signal structures. But to

make sure that a channel is truly empty, it is preferable to



Filter 

Energy Detector 

Signal Generator 

Antenna 
ADC 

LNA 

Mixer 

Fig. 8. QuickSense benchmark device consists of analog hardware and a
signal generator. An ADC is used to read the energy detector output.

perform one of the narrow band sensing right before the actual

transmissions, once the target band of use is decided.

Energy from adjacent channels: An analog filter does not

completely remove out of band frequencies. This residual

energy from adjacent channels might increase overall energy

readings thus incurring false positives. Note that the steepness

of the filtering function is defined by the roll-off factor and

the value is accurately known a priori. Using the knowledge,

it is possible to calibrate the energy reading values such that

the false positive due to the residual energy is minimized.

Forbidden channels: Certain channels within a wide band

might not allow dynamic access, e.g., due to government

policies. We can handle this straightforwardly, by changing

lines 15 and 24 of the algorithm in Figure 2 as follows.

Whenever we measure a sub-band that lies within a forbidden

channel, we skip the measurement and simply set the measured

power to exceed the threshold.

Finding available channels only: Some application might

want to find available channels rather than building a complete

spectrum map. QuickSense algorithm can be modified such

that it terminates as soon as it finds the available channels

required by the application. However, this may not be optimal

all the time. If we know the noise power of each channel

accurately, e.g., from noise map, we can run a binary search

algorithm. This will result in at most log2(N) measurements.

IV. EVALUATION

We first perform proof of concept experiment using real

hardware devices. Then we perform trace-driven simulation

using the real traces collected at UHF TV band.

A. Proof of Concept Experiment

The main goal of this experiment is to demonstrate the

availability of QuickSense using hardware implementations in

real environments. We do not implement the control unit in this

initial prototype but manually run our algorithm instead. The

hardware costs below $100 and consumes less than 200mW.

With the implementation, we perform benchmarks to see

how faster QuickSense can perform channel sensing compared

to the sequential scan in UHF TV band at 470 – 698MHz. The

result is that the enhanced QuickSense design performs 2.9X

faster searches compared to the sequential scan.

We also experiment to see the amount of time required per

channel sensing, which is directly related to channel sensing

delay and accuracy. QuickSense reliably detects signals around

-80dBm with only 50µs sensing delay.

1) Hardware Components: We use hardware components

that include multiple analog devices and a signal generator

as shown in Figure 8. The final output is DC voltage that

represents the detected energy at filters. The voltage values are

finally recorded in the PC. Note that we do not use preselector

in this design as we do not need to demodulate the input signal

but only to measure the energy level. Hardware components

are listed in the order of RF processing in the following.

• Antenna: A7U UHF antenna from Lectrosonics for UHF

TV band is used.

• Low noise Amplifier: LNA increases input signal strength

while maintaining low noise figures. Analog Device’s

ADL5521 is used. It has 20dB gain.

• Mixer: The mixer is used to down-convert signals at

carrier frequencies into baseband signals at DC. The

mixer takes two inputs, one from LNA and another from

the signal generator. We use Analog Device’s AD8342.

• Filter: Since the ideal bandwidths as required in Quick-

Sense are not available in the market, we try to make

the best approximation based on the availability. We use

MiniCircuit’s lowpass filters SLP-5, SLP-15, SLP-30 and

SLP-50. Bandwidths of these filters are 5MHz, 15MHz,

32MHz and 48MHz, respectively.

• Energy Detector: The energy detector measures the sig-

nal energy from filter outputs in dBm. We use Analog

Device’s AD8306. The output is 0.4V when the input

signal is around -87dBm and it linearly increases until

the signal strength becomes 13dBm. At this point, the

output becomes 2.2V.

• ADC: The ADC reads the energy detector’s voltage

output into digital samples. We use Analog Device’s

AD9649 which has the 14bit bandwidth and the 20MHz

sampling rate. At PC, VisualAnalog software stores the

digital samples into files.

2) Energy Detection Threshold: The energy detection

threshold is derived from the noise power measurements. The

noise power is measured using a spectrum analyzer and we

build the noise map using the information. The noise spectral

density differs at different frequencies. In UHF band, for ex-

ample, its average is -155.6dBm/Hz in our lab. It translates into

-88.6dBm, -83.8dBm, -82.2dBm and -78.8dBm with 5 MHz,

15MHz, 32MHz and 48MHz filter bandwidth, respectively.

3) Benchmark: We filter the received signal using different

filters. The energy outputs from the filters are measured at

every fixed frequency intervals. Based on the data, we see how

many channel sensings our basic/enhanced QuickSense design
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Fig. 9. Energy measurements of UHF TV whitespace at different filter
bandwidths.

Channel Frequency (MHz) Distance (miles)

15 476 - 482 31
17 488 - 494 10
25 536 - 542 32
27 548 - 554 9
28 554 - 560 10
38 614 - 620 26
42 638 - 644 31

48 674 - 680 8
49 680 - 686 10

TABLE I
LIST OF 9 TV STATIONS WITHIN THE AREA AND THEIR DISTANCES TO

OUR BUILDING.

Filter QuickSense-B QuickSense-E

5MHz 28 13
15MHz 15 13
32MHz 6 13
48MHz 1 13

Total 50 13

TABLE II
NUMBER OF CHANNEL SENSING PER FILTER WITH QUICKSENSE-B AND

QUICKSENSE-E IN UHF TV BAND.

would require to build the spectrum map. For convenience, we

refer each as QuickSense-B and QuickSense-E.

There are total 38 channels in UHF TV whitespaces where

each channel occupies 6MHz. This means that the sequential

scan would require 38 channel measurements. Among these,

9 channels are being used by TV stations operating within our

area. As a ground truth, we list those TV stations and their

respective distances to the our lab in Table I.

Figure 9 shows the energy outputs from the filters having

5MHz, 15MHz, 32MHz and 48MHz bandwidths. They are

measured at every 6MHz frequency intervals. We use this

data to emulate QuickSense-B and QuickSense-E and compute

the number of channel sensing operations required by each.

Table II shows the result. QuickSense-B completes the sensing

with 50 measurements in total. In this case, the performance of

QuickSense-B is even worse than the sequential scan. As we

will revisit this issue in Section IV-B3, QuickSense-B begins

to perform poorly if one fourth of the channels are occupied.

On the other hand QuickSense-E builds the spectrum map with

only 13 measurements. This is 2.9X gain over the sequential

scan. The main reason is that all the filters go through the

channel sensing in parallel.
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Fig. 10. As the number of energy readings is around 1,000, the noise
estimation error becomes very low, around 0.5dB.

4) Accuracy vs. Delay: In reality, an accurate channel

detection needs multiple energy readings. The main reason is

the background noise. A single measurement can be distorted

by the background noise. So it is required that the receiver

gathers the sufficient number of energy readings to cancel out

the contribution of background noise.

Using the hardware implementation, we observe the noise

estimation error |E[ω2]−Ω| in dB with regard to the number of

energy samples. Here E[ω2] is the average energy reading from

a vacant channel and Ω is the actual noise power accurately

measured using the spectrum analyzer. We vary the number

of energy measurements to see the change in the estimation

error. Two different filter bandwidths (6MHz and 48MHz)

are tested. Figure 10 shows the result. From the figures, we

observe that the estimation becomes accurate as the number of

energy samples increases. If we collect 1,000 energy samples

and average them, the estimation error becomes 0.1dB.

Analog hardware does not have an impact on the total

sensing delay. The response delay of the analog filters and

the analog energy detector is very short. Analog filters have

response delays of around hundreds ns. SLP-5 has the longest

response delay among the filters that we have, and it is

327ns [21]. An energy detector is even quicker, having the

maximum delay of around 0.6ns [22]. Given that 1,000 mea-

surements are required per channel sensing, the total delay

incurred by analog hardware part will not exceed 500µs.

Suppose an ADC is used to collect energy readings from the

energy detector. If a device is to collect 1,000 energy readings

per channel sensing, it takes 0.05µs with 20MHz ADC and

1ms with 1MHz ADC, respectively.

B. Trace-Driven Simulation

In this section, we perform sets of simulation using real

signal captures. We first investigate how accurately Quick-

Sense can sense a channel. Then we compare the algorithmic

performance of QuickSense with the sequential scan and the

compressed sensing.

1) Simulation Setup: For realistic evaluation, we use live

over-the-air signal captures. The signals in all TV white

spaces, ranging from 470MHz – 698 MHz, are captured with

SDR with an UHF indoor antenna attached. As the sample

rate of the radio is 25 MHz, it cannot cover the whole white

space. We sample each TV channel separately after down-
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Fig. 11. The ratio of false negative signal detection is shown with different
number of energy readings used for the channel sensing. Also the signal
strength is differentiated.

converting to DC. The captured TV signal strength range

between -66 dBm to -84 dBm in our measurement. Once

all the TV channels are captured, we synthesize the separate

signal samples in the following way. The signal samples from

each channel are interpolated and then oversampled by a

factor 2×B/R, where B is the total bandwidth of the white

space and R is the sample rate. Now we aggregate these

samples to have the synthesized broadband signal S(t) as

S(t) = ∑k sk(t) · e
2π j fkt , where sk(t) is the baseband signal at

the kth TV channel at time t and fk is the carrier frequency of

the kth TV channel. The term e2π j fkt represents carrier signal.

In the process, it is possible to arbitrarily vary the number

of occupied channels within the synthesized signal. We can

simply choose signal samples from either sets of occupied or

vacant channels when creating the synthesized signal.

The behavior of analog filters is emulated using a software

implementation. We generate log(N) fixed-bandwidth Cheby-

shev lowpass filters. Chebyshev filter is chosen because it

has analog implementation counterparts and provides good

separation between sub-bands. The unit bandwidth of the

filters is 6MHz following the actual TV channel bandwidth.

For the energy detection threshold, we use the measured

data as in Section IV-A2. The noise spectral density -155.6

dBm/Hz and it translates into -87.8 dBm in 6 MHz TV

channel. It increases by 3dB as the filter bandwidth is doubled.

We implement [14] as the compressed sensing algorithm. It

basically assumes the use of an analog DFT device, a hardware

that obtains entire wideband spectrum in the analog domain.

Then a low-rate ADC performs random-sampling over the

analog buffer and the results are linearly combined afterwards.

For the comparison with QuickSense, we calculate M/N,

where M is the number of samples and N is the number of

Nyquist-rate samples, that yields 99% detection accuracy. The

sparsity information is required and we assume it is completely

known at each run.

2) Channel Sensing Accuracy: The false negative ratio is

measured while we vary the number of energy readings per

channel sensing (as in Section IV-A2) and signal strength.

The false positive is almost negligible in the result and we

omit the result here. Figure 11 shows the result. With -80dBm

or higher signal strength, 1,000 samples yield reasonably
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accurate estimation of the signal power. Note that the signals

with -70dBm or higher strength can be sufficiently detected

with only 10 energy readings. In DSA networks where signal

strength is usually very strong, number of energy readings can

be significantly saved.

3) Channel Sensing Speed: We count the total number of

channel measurements for building a complete spectrum map.

Spectrum bandwidths with 1,000 channels are tested. The

number of occupied channels within the spectrum is varied

from 1 to 1,000. The simulation is run 100 times. At each

run, occupied channels are located at random positions.

The result is plotted in Figure 12. The sequential scan

always scans through all the channels and thus spend constant

number of measurements. On the other hand, the compressed

sensing always completes the channel sensing with less sam-

pling than Nyquist-rate samples.

QuickSense-B outperforms the sequential scan when the

spectrum is sparse. For example, when 50 channels are oc-

cupied, it takes less than 500 measurements, which is 1/2 of

the sequential scan. But the performance soon deteriorates due

to the following reason. When vacant channels are detected

QuickSense-B moves to next searching space and expands its

searching window. Otherwise if a channel usage is detected

it shrinks the window while staying at the current searching

space. As the spectrum usage becomes denser, it will repeat-

edly expand and shrink its window while moving back and

forth around the same frequency. We observe in Figure 12 that

QuickSense-B performs the channel sensing most when the

spectrum is around half-occupied. As the spectrum gets denser,

the sensing time decreases because QuickSense-B performs

sequential scan on occupied channels most of the time.

QuickSense-E shows significantly better performance. Com-

pared to QuickSense-B, QuickSense-E requires as few as

20% of the total measurements. Especially when only one

channel is occupied, it performs the measurement operation

less than 5 times in average. This superior performance comes

from the parallelized channel detection using log2(1,000) = 10

filters. QuickSense-E does not experience the same problem

as QuickSense-B; QuickSense-E never goes back to previous

searching space when it senses an occupied channel. While

it is hard to generalize, in our simulation the performance



of QuickSense-E is even better than that of the compressive

sensing within sparse channels. Yet QuickSense-E does not

require the prior knowledge of channel sparsity or specially

designed hardwares.

What would happen if the channels are grouped and used

as a single channel, e.g., for channel bonding? We group

every 8 channels and make them consecutively located. In

this case, there are less number of fragmented channels and

QuickSense becomes very efficient. QuickSense-B saves up to

51% measurements. We can see that the channel sensing of

QuickSense-E is even less than the actual number of occupied

channels in the consecutive channel setup.

V. RELATED WORK

There is a large body of work on narrow band sensing [11]

which are either based on detecting the signal energy or the

signal signature. The signatures include waveform or cyclosta-

tionality of the signals. When it is known, the signature-based

techniques can detect signals with low SNR. However, these

techniques are complicated. Also prior knowledge of received

signals is required, which is not always available.

The most related works are compressed-sensing-based tech-

niques [14], [15], [16], [17]. Typically, a lower rate ADC

is used to carry out sub-Nyquist sampling. These techniques

propose to separate the “sample-and-hold” stage of the ADC

from the “quantization”. It requires compressed sensing pro-

jections without quantizing. This has to be done in the analog

domain using special chips. For instance, analog buffers are

used to store the signal input before the quantization stage.

Also the special hardware is required that is capable of doing

matrix multiplication in the analog domain. Real-world imple-

mentation of compressed-sensing-based spectrum sensing is

thus very challenging. The accuracy of the spectrum sensing

depends on the compression ratio (higher means retaining

more samples). Prior works [14], [15] usually assume that

the sparsity of the signal is known. In contrast, QuickSense

naturally adapts to the sparsity of underlying spectrum and the

accuracy does not depend on the compression ratio.

Recently Meng et al. [23] proposed a collaborative com-

pressed spectrum sensing approach. Each node is equipped

with a frequency selective filter, which linearly combines

multiple channel information. The linear combinations are sent

as reports to the fusion center, where the occupied channels are

decoded from the reports by compressed sensing algorithms.

By exploiting the sparsity of occupied channels, the number

of reports needed by the fusion center is reduced. Gathering

reports introduces significant delay.

VI. CONCLUSION

In this paper, we have proposed a fundamentally new ap-

proach to fast wideband spectrum sensing. Unlike compressed

sensing or wideband radio approaches, QuickSense does not

require complicated hardware devices. Instead, we use off-

the-shelf analog filters and energy detectors that are cheap

and energy-efficient. We combine the hardwares with novel

and efficient algorithms. The complexity of QuickSense is

asymptotically same as that of compressed sensing. We have

performed proof of concept experiments using real hardwares.

Simulation results demonstrate that the performance of Quick-

Sense is comparable to compressed sensing while QuickSense

does not require prior knowledge of sparsity of the spectrum.
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