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ABSTRACT

A variety of mobile phone applications are on the rise, many
of which utilize physical location to express the context of
information. This paper argues that physical location alone,
unless remarkably precise, may not be sufficient to express
this context. Even slight localization errors may cause a
mobile phone to be placed in a grocery store, as opposed to
its actual location in an adjacent coffee shop. Applications
such as location specific advertisements, can get affected.
This paper proposes accelerometer augmented mobile phone
localization (AAMPL), a system that uses accelerometer sig-
natures to place mobile phones in the right context. Early
evaluation on Nokia N95 phones shows that AAMPL can
correct locations derived from Google Maps. We believe
that AAMPL can be extended to additional sensors (like
light and sound) to further aid GPS-free localization.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems|:

Real-time and embedded systems; C.2.4 [Computer Com-
munication Networks|: Network Protocols

General Terms

Design, Experimentation, Measurement, Human Factors
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1. INTRODUCTION

The proliferation of mobile phones is motivating a va-
riety of pervasive, context-aware, social applications. Ex-
amples include Micro-Blog [1], MetroSense [2], Place-1Its [3],
PeopleNet [4], MyExperience [5], and several others. Many
of these applications exploit the location of the user as a
primary indicator of context. While most applications as-
sume GPS based localization, recent investigations are be-
ginning to expose several tradeoffs when using GPS. Poor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MELT 08, September 19, 2008, San Francisco, California, USA.
Copyright 2008 ACM 978-1-60558-189-7/08/09 ...$5.00.

indoor coverage with GPS, alongside its high energy con-
sumption [1], warrants alternate localization methods. Some
alternates, proposed by Place Lab and others [6, 7], utilize
WiFi/GSM based fingerprinting and triangulation to local-
ize mobile phones. While the improvements in coverage and
energy are encouraging, they arise at the expense of higher
localization error ranging from 50 to 500m. Such error mar-
gins may exceed the tolerance thresholds of several appli-
cations. More importantly, even if these error bounds are
reduced to a few meters, they may still be insufficient to
capture the user’s context. We present our argument next.

Consider an example application — Micro-Blog [1]. One
feature of Micro-Blog is that location-specific queries are
geocast to mobile phones present at the corresponding lo-
cation. For example, an Internet user may query about the
“availability of free WiFi” at a particular coffee shop. If
this query reaches phones in the adjacent grocery store, the
replies to this query may be inapplicable. Existing localiza-
tion schemes, even with accuracy of few meters, may not
be able to avoid this. The physical separation between two
phones may be small (few meters), and yet they may be in
logically different contexts (opposite sides of the wall sep-
arating the coffee shop and the grocery store). We argue
that localization needs to be performed across two domains,
namely physical and logical. This paper presents a frame-
work, AAMPL, that accepts the approximate physical loca-
tion of a mobile phone, and augments it with context-aware
logical localization. The main idea is described as follows.

Modern phones are equipped with a large number of sen-
sors, including cameras, microphones, accelerometers, and
health-monitors. These sensors are natural candidates for
sensing the context in which a user is situated. Automatic
access to such context information can be exploited towards
localization. For instance, a user’s movement (derived from
the phone’s accelerometer) may be effective for predicting
whether the user is in a coffee shop or a grocery store. Since
geographical localization can narrow down the choices to a
few nearby contexts, accelerometer readings may be effective
in selecting the correct one from among them. Hence, the
“WiFi availability” query can be correctly guided to phones
in the appropriate coffee shop. While classifying accelerome-
ter signatures is one axis of augmentation, one may envisage
multi-dimensional context sensing through light and noise
signatures. This paper develops a framework for combining
physical and logical localization via real-time classification
of accelerometer readings. Evaluation on Nokia N95 phones
shows that AAMPL was able to correct physical locations
derived from phone GPS and Google Maps.



2. RELATED WORK

We divide the related work into two following branches:

Activity Recognition: Several papers have studied ac-

tivity recognition using accelerometers. Bao and Intille showed

that it is possible to detect 9 everyday activities using 2
biaxial accelerometers mounted on a user [§8]. Other re-
search has investigated augmenting accelerometer data with
on-body audio sensors to detect recurring human behaviors
[9]. Project SATIRE [10] extends these results by imple-
menting a sensor mote based architecture that takes advan-
tage of recognizable accelerometer signatures. The authors
attempt to develop accelerometer-equipped smart clothes
that could trigger alerts or record daily activities. Several
projects have explored applications of context-aware mobile
devices [11, 12, 13]. Project SenSay [14] aims to provide
a context-aware phone that adapts its state based on the
environmental and physiological changes. It uses externally
mounted light, motion, and sound sensors to provide the
contextual information. Inspired by these findings, AAMPL
leverages accelerometer signatures towards augmenting lo-
calization. Readings from the on-board accelerometer of a
mobile phone are transmitted over WiFi/GSM connections
to a central server, which then localizes the phone in real
time. The architecture is made energy-aware, permitting
AAMPL to be a deployable underlay to next generation ap-
plications.

Localization: With increasing location based applica-
tions for mobile phones, localization has been an exciting
topic of research. Since GPS is energy-hungry and has poor
accuracy in indoor and dense urban areas, other localiza-
tion techniques have been explored [6, 7]. Augmenting GPS
with WiFi and/or GSM data has been shown to aid in lo-
calization. Also, external sensors can aid in placing a user
in a specific location [12]. The advantage of AAMPL is that
it unifies GPS based localization with other sensory inputs
(accelerometer in the case of our implementation). While
GPS offers an approximate location, an accelerometer based
classifier effectively discriminates between possible logical
locations. We present the design, implementation, and the
evaluation of the system, next.

3. ARCHITECTURE AND DESIGN

Figure 1 presents the client-server architecture of AAMPL.
Without loss of generality, we describe AAMPL for localiz-
ing phones located in urban business areas (shops, stores,
malls). However, AAMPL may be equally effective in many
non-business indoor environments, such as homes, schools,
or workplaces.

3.1 Client-Server Architecture

The AAMPL client runs on a Nokia N95 smartphone, and
uses a 3G or WiFi Internet connection to communicate to
the server. The client and server operate in conjunction to
first classify the type of business a user is in, based on ac-
celerometer data. The server then uses this classification to
choose from a list of businesses near the phone’s physical
location. The main operations are as follows.

The client collects X, Y, and Z-axis accelerometer data
at one second intervals. These data points are logged in
memory over the duration of a minute, and are then passed
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Figure 1: Block diagram of the AAMPL architecture

through a filtering layer that classifies each accelerometer
data point into an “action state”, which, in our implemen-
tation, is either “sitting” or “standing”. This classified ac-
celerometer data is then aggregated into three features that
can be used at the server to classify a location (details pre-
sented later). The aggregated features are included in a data
packet, along with a timestamp and the physical coordinates
derived from GPS, WiFi, or GSM. The data packet is sent
to the server via an HTTP POST request.

The server is mainly responsible for classifying the accelerom-
eter data, and using the results to refine the physical location
of the device. Logically, the server application is divided into
three different components: (1) A MySQL database stores
business and mobile activity information, keeping an up-
dated list of nearby businesses and client data logs. (2) A
classifier is responsible for classifying the business category
based on a set of recent points in the “logs” database. (3)
A controller coordinates events across the different compo-
nents, and communicates to the mobile client when neces-
sary. When a packet first arrives, it is added to the “logs” ta-
ble, which contains a list of recent accelerometer data points
and location coordinates, provided by the mobile client. The
server dynamically queries Google Maps for an updated list
of businesses near these location coordinates. The controller
then examines the database to determine whether the lat-
est accelerometer data point is within a “span,” which is
a sequence of data points with close spatial and temporal
proximity to one another. The new data point is appended
to the most recent span if appropriate. If not, a new span
is created. Note that it is assumed that all the points in a
single span come from the same business location. The con-
troller then sends all the points from the latest span to the
classifier, which uses the accelerometer features to classify
the business category of the entire span. The controller can
then use this classification to filter out the nearby businesses
in the database, only returning businesses in the given cate-
gory. The filtering module also uses other relevant pieces of
information to filter out unlikely businesses. For example,
business hours, stored in the “businesses” database table, are
used to filter out locations that are not open. This list is
returned to the phone and displayed on the screen.



3.2 Energy Awareness

Sending a single bit of information through a wireless
medium (Wi-Fi or GPRS) uses the same amount of power
as 800 clock cycles of processing [15]. Thus, it is important
to limit the amount of data sent back to the server for clas-
sification. These considerations motivate the need for data
aggregation at the client side. In AAMPL, the accelerometer
classifier is set up such that 60 128-bit accelerometer data
points (960 bytes in total) can be aggregated into 24 bytes
that provide most of the information necessary for business
classification. An improvement factor of 40 is immediate,
substantially reducing the energy costs.

3.3 Classifier Design

The classification system is responsible for classifying ac-
celerometer data from a span (where each span corresponds
to a business category). In the current implementation, we
decided to classify each span as belonging to one of three
classes: restaurant, fast food, or retail store. This classifica-
tion system required the collection and analysis of a training
dataset. So, an accelerometer data-logging application was
programmed for the N95 that collected samples from the 3-
axis accelerometer every second. (Each accelerometer data
point contains raw signed acceleration integers for each of
the X, Y, and Z axes, with a conversion rate of decimal64 to
1g of acceleration.) Data was collected from 16 locations in
the Raleigh/Durham metropolitan area. For each business,
logging began upon entering the business, and was stopped
upon exit. The phone was placed in the right pocket of
a pair of jeans. In addition to business-specific data collec-
tion, measurements were taken for two different action states
that are used in the classification. About 1000 data points
(spanning 1000 seconds) were collected while standing (i.e.
walking around and standing still) and sitting. The phone
was placed in the pocket in a variety of different angles and
configurations, although each time it was approximately up-
right in the pocket with the screen facing outward. When
collecting standing data, the tester stood and walked with
a variety of different gaits. Figure 2 shows this training
data. These two states, as can be seen from the data, ap-
pear as distinct, separable distributions. Training data from
the three business categories also had interesting distribu-
tions with distinguishable patterns (Figure 3).

The classifier design was faced with a energy versus com-
plexity tradeoff. While classifying patterns in different busi-
ness distributions demand high computation cost (favoring
server side classification), reducing the energy cost of data
transmission favors classification at the phone client. In view
of this, AAMPL adopts a two stage classifier, with the first
stage occurring on the phone and the second on the server.
In the first stage, each accelerometer data point is classi-
fied as either sitting or standing, using a Bayesian classifier.
The classified data allows for the extraction of three aggre-
gate features that can be used in the second stage of business
category classification. The first feature is the percentage of
points that are in the standing state, the second is the av-
erage variance over all three axes for points in the standing
state, and the third is the total number of points taken from
the business, which translates directly to the amount of time
in seconds. These aggregate data features describe the data
in a concise manner, and provide most of the information
needed to make a classification. For each such classifica-
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Figure 2: X-Y-Z accelerometer training data for
standing (black) and sitting (red)

tion, only a small amount of meta-data needs to be sent
to the server. The server, which keeps a database of busi-
ness category training points, then performs a multi-class,
three-dimensional classification on the test point. This sec-
ond stage of classification is done with a k-nearest neighbors
(KNN) classifier. Figure 4 shows a flow chart of this com-
plete classification scheme. A Bayesian classifier was used
for the first stage. Once a class conditional probability dis-
tribution function is created, the Bayesian classifier runs in
linear time for a set of data points. In addition, the Bayesian
classifier is easily extended to multi-class, multidimensional
classifications with little additional computation complexity.
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Figure 4: Business classification flow chart

For the Bayesian classifier, it was assumed that the prior
distributions of sitting and standing are equal (P(w;) = .5).
The classification then degenerates to a simple comparison
between the two class conditional probabilities for sitting
(Eqn. 1) and standing (Eqn. 2):

P(xlwsitting)
P(m|wstanding)

If > 1, then choose sitting (1)
P(I‘wsitting)
P($|wstanding)

If <1, then choose standing  (2)

To obtain the above class conditional probabilities, non-
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Figure 3: X-Y-Z accelerometer measurements in (a) restaurant, (b) fast food joint, and (c) retail store

parametric kernel density estimation (KDE) was used with
a Gaussian window function on the training set in Figure
2. 50x50x50 three dimensional class conditional probabili-
ties for sitting and walking were saved as text files for use
as Bayesian classifier lookup matrices on the phone. After
every point in a dataset is classified as sitting or standing,
the percent sitting, number of points, and variance features
are calculated with the aggregator. The variance of stand-
ing points is approximated by the average of the X, Y, and
7 axes variances. The second stage classifier is responsible
for taking an aggregate feature point, as produced by the
first stage classifier and aggregator, and classifying it into a
single business category. While this classification lends itself
to a number of different multi-class classification techniques,
the small data set limited the effectiveness of more compli-
cated methods. For this reason, a relatively simple KNN
classifier was chosen for this stage. The training set for this
classifier can be seen below in Figure 5. This training set
was classified and aggregated using the first stage classifier
described above. The set is first normalized such that all
the dimensions € [0,1].
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Figure 5: Business classification training data for
restaurants, fast food, and retail stores.

While our dataset is very limited, one could imagine a
larger dataset that occupies this feature space more com-
pletely. This larger training set could be used for any num-
ber of advanced classification techniques that are trained to
minimum validation error, and these techniques could be
implemented on the server without having to change any-
thing on the mobile phone client. However, for this partic-
ular application with such a small dataset, a KNN classifier
was sufficient. If a larger training dataset or more features
becomes available, this information could be easily incorpo-
rated to enhance the accuracy of the classifier.

4. SYSTEM IMPLEMENTATION

The AAMPL phone client was implemented on the Nokia
N95 smartphone in approximately 3300 lines of code using
the Carbide C++ IDE and compiler for Symbian OS. The
server side was implemented in approximately 1650 lines of
code across PHP, Perl, and MySQL. The implementation
details are presented in the next two sections.

Phone Client: The Nokia N95 smartphone, currently
the flagship of the Nokia product-line, runs on the S60 3rd
Edition platform, using Symbian OS v9.2. The AAMPL
software requires access to the phone’s location and network
services, which are provided by the S60 SDK. We obtained
an Open Signed Online certificate, to be used for develop-
ment purposes only, from the Symbian Signed website [16].

Web Infrastructure: We installed a lighttpd 1.4.18 server
to offer HT'TP access to the client, as well as to interface with
the back-end MySQL database server. Relevant installations
on the server include PHP 5.2.4; Perl 5.8.8, and MySQL
5.0.24a. Logs, sent from the client every minute via POST
requests, are received by the server and communicated to
the database server through PHP. After each log is added
to the database, the entire collection of logs is analyzed us-
ing PHP and Perl scripts. More specifically, Perl is used for
the two classifiers, and all other server-side logic is imple-
mented in PHP. After a request is received and processed
by the server, a response is sent to the query-originator (the
AAMPL phone client). For testing purposes, the response
contains a list of possible businesses, ordered by likelihood,
in which the client is currently located.

S. EVALUATION

We report early evaluation of AAMPL from a set of lo-
cal businesses in the Duke University campus. We compare
AAMPL to a GPS-only approach, in which the client is as-
sumed to be in the business geographically nearest to the
most recent GPS measurement. The metric for success is
business prediction accuracy.

Classifier Evaluation: Overall, AAMPL serves its spe-
cific purpose well. The first stage classifier was tested for
its ability to classify whether each accelerometer point was
from the standing or sitting state. A 50-50 cross-validation
was used for this, i.e., half of the dataset was randomly
selected as training data, leaving aside the other half as
test data. This validation produced classifications that were
correct 98.9% of the time. While this classifier was not



tested with data from outside the training set, our inspec-
tion/verification of the classified training data gives us confi-
dence that the accelerometer will be able to well discriminate
sitting from standing. Further, these results help to validate
our decision to use a Bayesian classifier instead of a Hidden
Markov Model for this stage of classification. The next stage
of classification also produced encouraging results. Leave-
one-out validation was used to train and test the classifier
with the data collected. Each business was taken out of the
training set, and then classified with the remaining data in
the set. Each business was classified correctly using a sim-
ple nearest neighbor classification (KNN with & = 1). Of
course, if the dataset grew larger, this would probably not
be the case — k would need to be increased or another clas-
sification method would need to be employed.

Experimental Setup: The back-end “businesses” database
contains geographic information for 25 businesses near the
Ninth Street business district in Durham, NC. Figure 6
shows the stretch of Ninth Street on which we conducted
part of our experiments. The (red) pushpins correspond to
the actual locations of three adjacent businesses: Regulator
Bookshop, Blue Corn Café, and Bean Traders Coffee. The
(blue) balloons correspond to the positions of each business
as reported by the Google Maps API. The Google-reported
physical coordinates are moderately accurate, but the log-
ical discrepancies with the actual businesses can be signif-
icant. For example, the location of Regulator Bookshop is
reported as in front of the Blue Corn Café. We carried the
AAMPL-equipped phone in our trouser pockets and spent
varied amounts of time in or around the three locations.
Since the businesses were of different types (store, restau-
rant, and fast food, respectively), the accelerometer signa-
ture provided useful information for localization.
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Figure 6: Google satellite view of Regulator store,
Blue Corn restaurant, and Bean Traders fast food.
Coordinates from Google Maps marked with bal-
loons, and actual coordinates marked with pushpins.

5.1 Experimental Results

Overall, AAMPL performed well even with our simple
classification schemes. Table I summarizes a subset of our

Figure 7: AAMPL classification on Nokia Phone

experiment results. Trials 1 and 2 constitute a single visit
to Bean Traders Coffee. The GPS signal was lost upon
entering the shop, so the measured distances to the three
businesses are equal in the two trials. Though the location
information remained constant, the accelerometer signature
continued to provide useful information. After first entering
the shop, AAMPL classified the signature as that of a store
— incorrectly predicting Regulator Bookshop. However, af-
ter several minutes, the classifier recognized the accelerom-
eter signatures as those of a fast food shop, thus correctly
identifying Bean Traders Coffee. Trials 3 and 4 occurred
during a sit-down dinner at Blue Corn Café. As was the
case with Bean Traders Coffee, the GPS signal was initially
lost upon entering the restaurant. As a result, the ensuing
logs defaulted to the last valid set of GPS coordinates, but
the accelerometer signature continued to change. In trial
3, the GPS-only approach indicated that Regulator Book-
shop was closest. Since we had been sitting down for several
minutes, AAMPL successfully recognized the signature of
a restaurant and predicted Blue Corn Café as well. About
20 minutes into the dinner, a stray GPS signal was perhaps
received, yielding the inaccurate distance measurements of
trial 4. In this trial, the GPS-only approach correctly iden-
tified that we were currently in Blue Corn Café. AAMPL
continued to identify the restaurant setting, and remained
correct as well. Trial 5 was conducted in The Regulator
Bookshop, which is classified as a store. The nearest lo-
cation, as predicted by GPS-only localization, was Bean
Traders Coffee. However, AAMPL correctly classified Reg-
ulator as a store, which enabled a correct prediction of our
location. Figure 7 shows the AAMPL prediction screenshot
from our Nokia N95 phone implementation. This was taken
immediately after leaving Regulator Bookshop.

6. LIMITATIONS AND FUTURE WORK

Strengthening AAMPL: Clearly, reported results are pre-
liminary and hence indicative (not conclusive) of the poten-
tials of AAMPL. Our ongoing work is strengthening AAMPL
in a variety of ways, including (1) larger action states (be-



Trial Distance to Distance to Distance to | Classification | Actual GPS AAMPL
Regulator Bookshop | Blue Corn Café | Bean Traders Location Prediction Prediction
1 11.8m 36.2m 15.1m Store Bean Regulator Regulator
Traders Bookshop Bookshop
2 11.8m 36.2m 15.1m Fast Food Bean Regulator Bean
Traders Bookshop Traders
3 10.7m 18.7m 25.6m Restaurant Blue Corn | Regulator Blue Corn
Café Bookshop Café
4 85.9m 59.4m 95.3m Restaurant Blue Corn | Blue Corn | Blue Corn
Café Café Café
5 14.3m 26.2m 11.9m Store Regulator Bean Regulator
Bookshop Traders Bookshop

Table 1: Experimental Results (“Distance” indicates difference between GPS reading and Google estimate)

yond sitting and standing), (2) addition of more location
categories including non-business locations, (3) addition of
more features derived from accelerometers and other sensors.
Moreover, ladies may carry mobile phones in their handbags,
and accelerometer signatures may be less indicative of activ-
ity. We intend to investigate these issues in future.

Light, Sound, and Compasses: We are investigating the
applicability of light and sound signatures towards context
identification. Our belief, partially validated by preliminary
measurements, is that different contexts may exhibit dissim-
ilar photo-acoustic ambiances. While any individual signa-
ture is too noisy an indicator, their intersection may provide
stronger correlation with the context. Of course, cameras
may be mostly in pockets, and the opportunity may arise
only when the user takes it out for a phone call, or places
it on the table. Hence, acoustics may be a more reliable
source, and should perhaps be opportunistically augmented
by light signatures. We are also investigating the utility of
compasses to understand a user’s orientation, and correlate
that to the sitting layouts in restaurants and coffee shops.

7. CONCLUSION

Many mobile phone applications require a user’s context
to execute its functions. Rough location coordinates may
not be a flawless indicator of this context because the spa-
tial separation between these contexts may be arbitrarily
small. As a result, marginal errors in physical coordinates
may result in incorrect contextual information. This pa-
per proposes AAMPL — a framework that utilizes phone ac-
celerometers to augment physical localization services. The
main idea is to shortlist a list of potential logical locations
from GPS/alternate localization methods, and then choose
from these logical locations by exploiting dissimilar human
movements from each of them. In the restricted case of
business localization, we show that accelerometer signatures
from restaurants, coffee shops, and retail stores can be sep-
arable, thereby refining coordinates available from GPS or
Google Maps. In conjunction with other sensor signatures,
such as light and sound, the confidence of localization may
be further increased. Our ongoing work is investigating these
possibilities towards GPS-free context-aware localization.
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