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ABSTRACT
This paper envisions a future in which smartphones can be
inserted into toys, such as a teddy bear, to make them interactive
to children. Our idea is to leverage the smartphones’ sensors to
sense children’s gestures, cues, and reactions, and interact back
through acoustics, vibration, and when possible, the smartphone
display. This paper is an attempt to explore this vision, ponder
on applications, and take the first steps towards addressing some
of the challenges. Our limited measurements from actual kids
indicate that each child is quite unique in his/her “gesture vo-
cabulary”, motivating the need for personalized models. To learn
these models, we employ signal processing-based approaches
that first identify the presence of a gesture in a phone’s sensor
stream, and then learn its patterns for reliable classification. Our
approach does not require manual supervision (i.e., the child is
not asked to make any specific gesture); the phone detects and
learns through observation and feedback. Our prototype, while
far from a complete system, exhibits promise – we now believe
that an unsupervised sensing approach can enable new kinds of
child-toy interactions.

1. INTRODUCTION
We imagine a future in which toys interact and evolve with chil-
dren, while remaining as inexpensive as passive toys. Our key
idea is to insert a smartphone into the toy, say a teddy bear, such
that the camera of the phone aligns with the eyes of the bear
and the microphone and speakers are near the bear’s mouth.
With such a set-up, the toy has the opportunity to see, hear, and
motion-sense the child’s interactions, and respond back in a way
that improves engagement with the toy. As simple examples, a
teddy bear could say “ouch” when the child pulls it by an ear,
could sing a lullaby until the child falls asleep, or could even
vibrate when the child shakes hands with it. With connections
to the cloud, toys could be brought into a network to allow for
collaborative learning, ultimately leading to a new ecosystem for
toy-related apps and services.

This vision is not fundamentally new, but perhaps a logical next
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Figure 1: Smartphone inserted into toys, enabling them to
sense and interact with children.

step to the current trends in the toy industry. Today’s toys have
progressed from “passive” to “pre-programmed” objects, but
their set of interactions are static across time and individuals.
However, since each child is different in her taste and behavior
which evolve with age, future toys could evolve as well. Given
that mobile computing research is making rapid advances in
multi-modal sensing, activity/gesture recognition, emotion
analysis, etc., it seems viable that toys can be augmented with
such capabilities. A smartphone inserted in the toy (Figure 1)
should be able to train itself in an unsupervised manner and
respond meaningfully when the child is playing with it. In longer
time scales, the toy could download upgrades to itself from the
cloud, and perhaps periodically re-calibrate its models to stay in
sync with the child’s growth.

This project, named Buzz, is a long-term research commitment
focussed around the problem of autonomously learning a child’s
gesture vocabulary. By gesture vocabulary, we mean the set of
gestures that a child would naturally perform on the toy while
playing with it. Example gestures could be hugging the toy, shak-
ing hands, patting it, swinging it, etc. Our broader goal is to learn
the appropriate responses to a child’s gestures, such that these
responses from the toys can indulge the child into performing
more gestures, ultimately extending the length of each interac-
tion. Understanding this mutual relationship between gestures
and reactions is challenging – during the initial bootstrap phase,
neither the toy nor the child knows their counterparts’ prefer-
ences and capabilities. Yet, the toy needs to gradually learn and
converge on the mapping between responses and gestures. This
paper does not pursue this broader challenge, but concentrates
only on the first step of recognizing the child’s natural gesture
patterns. Recognizing this pattern library can itself be valuable
to a range of applications, including educational toys, early-
development monitoring, or guided entertainment.

Understanding the child’s gesture consists of two sub-tasks: (1)



detecting the presence of a gesture in the sensor stream, and (2)
clustering similar gesture signals for the purpose of classifica-
tion. The problem of detecting presence is non-trivial because
the child’s gesture vocabulary is not known a priori, and hence,
the toy cannot be trained on a set of pre-defined gestures. In
an ideal case, the child’s natural gestures need to be extracted
from a continuous sensor stream, polluted by noise and other
non-gestures (such as the child flicking the toy while walking
past it). Figure 2 shows snippets of a real sensor stream – the
deliberate gestures are difficult to tell from the inadvertent ones.

The second problem of clustering gesture signals arises from
the fact that repetitions of the same gesture from a given child
produce wide variance in their sensor data. This is an outcome
of weak muscle memory and control in toddlers, which prevents
them from faithfully reproducing an action. As a result, even if
Buzz has recognized all the gesture segments present in a sen-
sor stream, it still needs to create buckets of somewhat similar
segments. That way, if the child hugged the toy at 3 different
times, the segments corresponding to them will all be in the
same bucket (or class). Given that these segments from the same
gesture can be quite dissimilar, and even more dissimilar across
children, global thresholding on similarity can lead to heavy
false positives/negatives. Careful design is necessary, especially
in view of the unsupervised nature of the problem.
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Figure 2: Difficult to identify gesture segments. (The dotted
boxes are non-gestures while the solid box is an actual gesture.)

Our inspiration for solving these problems emerged fortuitously
from observing children in a daycare facility. Briefly, we ran
simple measurements and passively collected sensor data from
toys equipped with smartphones. This data proved to be very
sparse since the children played with our toys for short durations
and moved to other toys. To make the toys more engaging, we
repeated another round of experiments, but this time, the toy
made random funny sounds whenever there was any activity
recorded on the motion sensors. Surprisingly, we noticed that
when a child made a deliberate gesture to the toy, the funny
sound often prompted the child to repeat the gesture. However,
if the motion was caused by an inadvertent action, it was not
repeated. Subsequent experiments (designed to further verify
this observation) consistently produced encouraging results,
giving us a valuable handle on the overall problem.

With the gestures detected, Buzz employs the dynamic time
warping algorithm (DTW) to compute (dis)similarities between
all gesture pairs. DTW is particularly applicable here since it
allows for expanding and contracting a signal in time. There-
fore, even if a child executes the same gesture differently, DTW
accommodates some of these differences, resulting in reliable
characterization. Then, Buzz applies hierarchical clustering on

all pair-wise dissimilarities to create the gesture classes. The use
of thresholds is avoided to remain adaptive to different children
and their varying gesture patterns.

This paper incorporates the above ideas into a Android based
prototype (Nexus Galaxy phones inserted into 4 different soft
toys) and experiments with 2 different kids between the ages
of 1.5 and 3 years. As part of the ground truth collection, the
child’s actions are video recorded and the timing and nature of
each gesture is manually noted offline. As performance metrics,
we report the precision and recall across 38 gestures made in 8
experiment sessions, and observe the marked improvements in
“interaction time” with and without Buzz. Results are encourag-
ing in our opinion, with the interaction time increasing up to 3
times when running Buzz.

2. NATURAL QUESTIONS
(1) Why use smartphones? Removing the smartphone to receive
phone calls or other activities can be inconvenient. True, there
is no technical reason for using a smartphone – the sensing
capabilities could be achieved using any specialized hardware,
such as embedded sensors or integrated chips that are dedi-
cated to toys. However, given the ubiquity of smartphones, such
hardware may appear costly/unnecessary. More importantly, a
smartphone can enable new functionalities (e.g., voice recogni-
tion, laughter/cry detection, social interaction) simply through
software updates, requiring no hardware change. The interface
of smartphones allows parents to access these features without
buying new toys. In conversation with some toy makers and
venture capitalists, we were also suggested that old smartphones
may be better candidates since they can permanently remain
inside the toy (except for recharging). While these are relevant
issues for the broader success of the vision, this paper focusses
on the technical aspects alone.

(2) What defines the long-term success of the project? What is the
final metric for the system? We still lack clarity on the final metrics
for this project; it is quite possible that the metrics would emerge
from the application of interest. In this paper, we are attempt-
ing to build general primitives for unsupervised gesture recog-
nition, and defining the success narrowly as detection accuracy
(precision and recall). However, many questions remain unex-
plored. For instance, what is the complete gesture vocabulary for
a child? Do these toy–directed gestures reveal information about
the child’s behavior, growth patterns? Can some toy-responses
nudge the child into behavior modifications that are otherwise
difficult for parents? Is there valuable information to be gleaned
from a camera capable of continuously looking at a child from a
close-up? This paper is truly a preliminary step in this direction.

3. Buzz: A CORE DESIGN DECISION
When initiating the project, we decided to take up a data-driven
approach. Thus, as the very first step, we developed a simple
sensing module for Galaxy Nexus phones that collects the ac-
celerometer and gyroscope readings at the highest frequency. We
purchased a number of soft toys that already had back pockets
in them (using velcros), and inserted the phones in the toys. We
invited two children (of age 17 and 30 months) to play with the
toys and video taped the sessions for obtaining ground truth1.
The following observations – from the sensed data as well as

1This research is approved by Duke Institute Review Board (IRB
No.B0628).



from watching the video – influenced our design decisions.

(1) Low gesture density. Upon offering the toys to the chil-
dren, we immediately realized that meaningful gestures occur
infrequently in time. In 8 sessions, we registered 2 gestures per
minute on average, primarily because each child played with
his/her toy for short durations, and came back to it several hours
later. Larger experiments in a daycare facility (performed later)
reinforced this observation across multiple children.

(2) Extracting gesture signals. To extract meaningful signals
from a data stream, one common technique is to compute the
energy of the signal on a moving time window and select the
windows for which the energy is above a threshold. Unfortu-
nately in our observation, many gestures exhibited weak energy
footprints, while some non-gestures showed high energy. Figure
3 shows an example of mixed gestures and non-gestures. An
accidental “Drop” presents an energy higher than intentional
gestures “Grab” and “Shake”.
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Figure 3: Non-gestures can be stronger than gestures.

(3) Start and end markers. Even if the presence of a gesture
is detected, it is important to mark the start and end points of
the signal segment that contains the gesture. Poor markers can
cause a given gesture to match incorrectly with other gestures,
ultimately affecting classification. Signal segmentation with
zero background knowledge continues to be a tricky problem,
and has been the point of research in the signal processing and
activity recognition community [9, 2]. With noisy sensors on
smartphones, the problem is more pronounced.

The above observations offered us two useful guidelines in de-
signing Buzz. (1) Training a toy via passive sensing would be
highly time consuming and perhaps impractical as a real system;
data collection has to be sped up appreciably. (2) There has to
be an out-of-band way – some form of supervision – to detect
the presence of a deliberate gesture. An obvious approach is di-
rectly instructing the child to perform a few gestures and learning
on them. However, that defeats our core purpose of learning the
natural gestures of the child when she plays with the toy.

The Idea of Reactive Sensing
While we struggled to meet the two design guidelines above, we
continued to closely watch the behavior in kids while they played
with different types of toys. And over time we began noticing a
pattern. We observed that when a toy responds to a child’s action
(like a talking toy that laughs when the child presses its hand), the
child tends to repeat her action (to make the toy laugh again). This
served as a valuable inspiration, and actually forms the basis of
our design framework in this paper. (Later we also found scien-
tific articles [1] that reported the same observation.) We imme-
diately modified our smartphone to generate a random sound

whenever it suspected a gesture from the child. We then con-
ducted another round of experiments with the same two kids,
and this time they often repeated their gestures intentionally, in
order to hear more sounds. Observe that this single, trivial mod-
ification now met both the design guidelines. Due to repetitions
of the gesture, we obtained data points in higher density, while
still not forcing the child into any pre-defined gesture. Further,
we exactly knew the presence of a gesture, since a non-gesture
(such as moving the toy aside or stepping on the toy) would not
get repeated after the sound. The following section builds around
this core observation, and employs some techniques from ma-
chine learning and signal processing to suitably process the ges-
tures.

4. DESIGN SKETCH
Figure 4 shows a functional overview of Buzz. The system is
divided into two main modules – the front end, responsible for
quickly detecting potential gesture segments and generating
acoustic responses, and the back end, tasked with recognizing
and classifying the actual gestures, and training the toy on them.
In our current prototype, the classification is not real-time,
meaning that we evaluate the performance of gesture detection
offline. A fuller system would need to convey the recognized ges-
ture patterns back to the front end, so the front-end can present
the acoustic feedback in real-time. We leave this to future work.

Figure 4: System sketch: The front end generates acoustic feed-
back based on energy detection. The backend processes the
sensor data to crop out signal segments and trains on them.

4.1 Front End
To be responsive to (potential) gestures in real time, we compute
the total energy of the signal within a sliding window, and if this
value is above a certain threshold, an acoustic response will be
played. Three parameter choices are of interest: window size,
value of threshold, and the kind of acoustic responses that the
toy should generate. We discuss each of them below.

Choosing an incorrect window size has important ramifications.
A small window may cause the toy to react to the gesture too
early, interrupting the child while she is in the middle of a ges-
ture. Moreover, the energy in that window may not exceed the
threshold, and hence, the toy may not respond at all even though
its a legitimate gesture. Too long a window, on the other hand,
may delay the response much after the gesture, and the child
may not relate the gesture to the response at all. Given that



human perceptive delay is around 50ms-100ms [8], we set the
window size δ at 50ms (=5 samples at 100Hz). Also, from the
gathered data, we verified that all the legitimate gestures pre-
sented substantial energy when averaged over this time window.
We set the energy threshold conservatively to a low value, per-
mitting almost all gestures and non-gestures to elicit an acoustic
feedback from the toy. This threshold doesn’t distinguish them,
but serves as a nudge to the child to repeat her gesture, while
leaving the actual classification to the back end. Also, frequent
acoustic sounds from the toy – henceforth called a “beep” for
simplicity – engages the child for longer durations.

While choosing acoustic responses, we noticed that sounds
from real life confused the two children in our experiments. For
example, at first we attempted to use a sound clip containing the
laughter of a child – our rationale was that kids would like hear-
ing voices of other kids. However, when they played with the toy
and heard this sound, they got confused perhaps because they
expected real children around them. Instead, we experimented
with funny cartoon sounds that children don’t hear in real life,
and observed consistently better results. We are aware that this
is somewhat counter-intuitive – one would assume that famil-
iar sounds would be less confusing. Nonetheless, since these
children responded better to the cartoon sounds, we decided to
continue using them. In a more uncontrolled setting, the choice
of feedback sounds may also need to be learned on the fly.

With reactive sensing incorporated into the toys, we performed
another round of experiments with the 2 children. Figures 5,
6, and 7 report on the results. Figure 5 zooms into the sensor
data from one of the sessions picked randomly, illustrating the
higher density of more deliberate gestures with Buzz-enabled
toys. Passive sensing in contrast is sparser and interspersed with
non-gestures, such as “drop”, “grab”, etc. While this is a single
instance, Figure 6 shows aggregates across 8 different sessions –
the gestures are marked manually from the videos. For reactive
sensing, it shows the number of gestures that did not get re-
peated despite a beep (A), the number of gesture pairs repeated
before and after a beep (AA), and the number of gesture pairs
around a beep that were not similar (AB). Buzz recognized all the
gestures in the second bar (AA), far more than passive sensing
(which did not use acoustic feedback and hence could pull out
only a few gestures with confidence). Finally, Figure 7 shows the
total energy recorded on the sensors with passive and reactive
sensing. Substantially higher energy with reactive sensing is an
indicator of stronger engagement and interaction with the toy,
implying higher density of gestures. This is well aligned with
what we set out to achieve with reactive sensing.

4.2 Back End
Observe that the front end uses energy detection to trigger an
acoustic feedback, or beeps. This implies that the timing of the
gestures are likely to be around the timing of the beeps, and
hence, the backend can immediately crop out the portions of
the signal around each beep. However, these portions contain a
lot of false positives, since many non-gestures can also exhibit a
high energy footprint. The back end’s task is to (1) select portions
containing a valid gesture and extract the gesture segment (i.e.,
start and end time), (2) compute a similarity score between ges-
tures, and finally (3) compute the number of distinct gestures.
This is a difficult problem in general, but in this case we have
valuable domain knowledge – that beeps prompt children to
repeat their gesture.
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Figure 5: Zoom-in view of the sensor readings – higher gesture
density with reactive sensing. Non-gestures shown in braces.
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Figure 6: Acoustic feedback, or “beeps”, generate pairs of re-
peated gestures, facilitating recognition.

Segmentation
Figure 8 shows an example signal portion, which contains some
sensor signals and the timing of the beeps. Note that the beeps
are active as soon as the moving window detects sufficient en-
ergy. Now, given the timing of these beeps, the question is: are
the two signal segments, preceding the two beeps, similar? If so,
then we deem them as instances of a valid gesture. To perform
this similarity comparison, we first need to extract these two sig-
nal segments from the signal stream. As shown in Figure 8, Buzz
estimates the duration of each signal segment as (δ + the dura-
tion of the beep), where δ is the length of the sliding window dis-
cussed earlier. The segment starts δ time before the start of the
beep and ends at the end of the beep. Since the beep timings
are precisely known, Buzz extracts out the signal segments and
advances to the next step of computing their similarity.

Gesture Similarity
Computing the similarity between two signal segments, gi and
g j , can be performed using various techniques from literature.
In this context, however, we have prior knowledge that kids may
execute the same gesture in slightly different durations, due to
immature muscle memory [5]. Since the dynamic time warping
algorithm (DTW) [3] can compare expanded and contracted
versions of signal segments, it fits well for this application. The
algorithm searches the best alignments between two time series
vectors by trying to minimize the sum of absolute difference
between each pair. This method has founded frequent applica-
tions in speech recognition, where similar words can be spoken
at different speeds.

In our case, the vectors are multivariate, because we have accel-
eration and rotation, each with 3 dimensions. To include all the
information, we combine 6 dimensions of a signal segment into
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Figure 8: The timeline of sensor fluctuations and the beeps.

one matrix. Each row corresponds to a sample reading, and each
column is a sensing dimension. Euclidean distance is used as a
measure of (dis)similarity between two elements. Under this set
up, DTW calculates the distances between every two matrices
after aligning them – this distance is the “dissimilarity” score
between two gestures. The output is a dissimilarity matrix where
element di j denotes the distance (or dissimilarity) between
signal segment i and j .

Referring back to Figure 8, we now have the dissimilarity score of
signal segments A and B. However, we still need to resolve if this
dissimilarity is adequately small to deem them as the same ges-
ture. One possibility is to use a threshold – if their dissimilarity is
greater than the threshold, then they are not. However, choosing
a global threshold may be risky. Instead, we adopt an unsuper-
vised technique – hierarchical clustering – to understand how all
the gestures are scattered in the dissimilarity space, and then ex-
tract the valid gestures from them. As a result, we obtain an esti-
mate of the number of distinct gestures exhibited by the child.

Distinct Gestures via Hierarchical Clustering
A hierarchical cluster groups its elements based on the distances
between them, and presents in a hierarchical tree structure as
shown in Figure 9. In this figure, for example, segments 1 and
2 are very similar, with a distance of around 20 on the Y axis.
Furthermore, they are more similar to 11 than to 4, and so on. To
be able to extract the distinct gestures, we need to cut the tree at
some value of dissimilarity – each disconnected sub-tree below
that value will be a valid gesture, and all the segments in that
sub-tree would be deemed as instances of the same gesture. For
instance, if we cut the tree at the height of 45, then 10 and 12
would correspond to the same gesture, and 1, 2, 4, and 11 would
be segments of another gesture. However, we need to cut the
tree without choosing a global threshold. For this, we design the
following heuristic.

The lack of ground truth on the actual number of gestures leaves
us no choice but to try cutting the tree to every possible number
of classes. If we cut out only one big class, we cannot even
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Figure 9: Hierarchical cluster tree with 12 segments.

separate signals from noises. On the other hand if we cut the
tree into small classes, the worst case is that every class contains
only one signal. Such classes cannot be regarded as gestures,
because a gesture should be repeated for at least once. In other
words, a gesture class should contain consecutive signals that
are similar. We define signal pair, which is the combination
of two consecutive signal segments. A class is regarded as a
gesture, if it contains at least one signal pair. The key intuition
of our heuristic is that, the best cutting should give the largest
number of gestures, while maximizing the number of signal pairs.

Our heuristic traverses the number of classes and picks the one
that maximizes both the number of gestures and the number of
signal pairs. Table 1 shows an example. Each row considers in-
creasing number of classes, and the bold numbers denote which
signal pairs are present in the classes. Observe that for a few
classes, one class may contain many signals – so the number of
signal pairs would be high but the number of gestures is low. For
many classes, several classes may have only one signal segment
each – so now, both numbers of gestures and signal pairs would
be low. Buzz picks the highlighted row, and announces 2 valid
gestures as a final result – segments 8 and 9 are instances of the
same gesture, while segments 1, 2, 3, 4, 6, and 7 are instances
of another gesture. Of course, Buzz does not know what these
gestures semantically mean (whether its a hug, or a dance, or a
hand-shake).

Clus. Content of Clusters Gestures Pairs
1 everything 1 6
2 <5> <everything else> 1 5
3 <5> <10 12 8 9> <3 7 6 4 11 1 2> 2 4
4 <5> <10 12 8 9> <3> <7 6 4 11 1 2> 2 3
5 <5> <10 12> <8 9> <3> <7 6 4 11 1 2> 2 3
6 <5> <10 12> <8 9> <3> <7> <6 4 11 1 2> 2 2
7 <5> <10 12> <8 9> <3> <7> <6> <4 11 1 2> 2 2
8 <5> <10 12> <8> <9> <3> <7> <6> <4 11 1 2> 1 1
9 <5> <10 12> <8> <9> <3> <7> <6> <4> <11 1 2> 1 1

10 <5> <10 12> <8> <9> <3> <7> <6> <4> <11> <1 2> 1 1
11 <5> <10> <12> <8> <9> <3> <7> <6> <4> <11> <1 2> 1 1
12 <5> <10> <12> <8> <9> <3> <7> <6> <4> <11> <1> <2> 0 0

Table 1: Classifying distinct gestures without global threshold.

5. PERFORMANCE
We performed the above gesture recognition procedure on the
small data set we gathered from two children2, over a span of
two weeks. From the recorded videos of the children, we noted
38 valid gestures (of 6 types), and many noisy non-gestures. We
compare the timings of the detected gestures (G1, G2, G3, G4)
with the true timings of the actual gestures (labeled as jump,

2Daycare facilities were not comfortable with video recording
children precluding us from larger scale experiments.



shake, beat, etc.). Figure 10 illustrates the overall performance.
Gesture G2 classifies “beat” and “toss” as the same gesture and
recognizes both of them. Gesture G3 recognizes almost all in-
stances of “hop”. Gesture G4 recognizes one of the instances of
lift and misses out on the other. However, gesture G1 performs
worse classifying “shake” and “jump” to be the same gesture, and
incurring a number of false positives. The overall precision and
recall from these experiments were 85.1% and 81.6%, respec-
tively. We also observed 2.9x improvement in average interaction
time, i.e., the time for which the child played with a toy in a given
session. We believe these results are encouraging, although not
yet conclusive given the small size of our data set.
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Figure 10: Gesture recognition performance with Buzz

6. MANY LIMITATIONS
Needless to say, this paper is a small step towards the broader
vision, and substantial work remains, as discussed here.

Small Data Set. The results from this paper is not meant to be
conclusive, rather an indication of viability. We are making an
earnest effort to reach to larger bodies of children, even visit
each of their homes, and run the experiments under parental
supervision. Of course, we are facing IRB and several other
logistical hurdles.

Better Algorithms. This paper uses simple techniques for ges-
ture recognition, partly in view of running the algorithms on the
phone. It is entirely possible that more sophisticated algorithms
(such as Hidden Markov Models) can be executed on the phone
itself, or if necessary, on the cloud. The search for the optimal
techniques is left to future work.

Energy Consumption. This paper sidesteps the question of
energy consumption, however, opportunities exist. Upon de-
tecting that a child is not playing with a toy, almost all sensors
can be turned off, except perhaps the least energy-hungry
sensor – compass. Further, emerging chips (Qualcomm Snap-
dragon) are offering continuous sensing capabilities lasting for a
week. We believe energy can be addressed in the context of this
short/bursty usage pattern.

Useful Non-gestures. We defined non-gestures as actions that
were not directed to the toy – examples are, stepping over the toy,
moving it away, pulling it in a box full of toys, etc. On second
thoughts, perhaps non-gestures could also be used for acoustic
responses from the toy. The toy could scream “that hurts” when
the child steps on it. While this makes gesture detection per-
haps easier, the space of responses now grows larger, making the
gesture-response mapping harder.

7. RELATED WORK
The idea of using smartphones to enhance traditional toys is not
entirely new. Ubooly is a recently launched toy that allows users
to insert an iphone into a small bear, such that the phone screen
remains exposed. The screen displays the face of the bear and
speaks or produces facial expressions when the child touches the
screen. Laugh & Learn Apptivity Case is another new casing for
phones, allowing parents to protect their phones while kids can
play with them. Notori [4] is a play kit that combines mobile apps
with traditional wooden toys. While these toys are beginning to
exploit smartphone capabilities, to the best of our knowledge,
none attempts to recognize gestures in an unsupervised man-
ner. Adult–facing devices, such as Kinects, Wii’s, Nike Fuelband,
smart–watches [6] have, on the other hand, concentrated on ma-
ture activity recognition. However, these too are built on super-
vised platforms. In the academic community, recent research has
investigated various problems in unsupervised gesture recogni-
tion [7]. We adopt these techniques, and customize them to the
space of toy-children interactions.

8. CONCLUSION
We explore the possibility of bringing smartphone–based gesture
recognition to children’s toys. We believe that a new ecosystem
could emerge, with new kinds of toys, apps, and even internet of
toys. A community of toys and children could emerge, even in
real time via the cloud, enabling new kinds of social interactions.
While this paper takes only a small step in pursuit of this vision,
we hope it conveys the rich prospects underlying the fusion of
toys with mobile computing.
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