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ABSTRACT
Inertial sensors continuously track the 3D orientation of
a flying drone, serving as the bedrock for maneuvers and
stabilization. However, even the best inertial measurement
units (IMU) are prone to various types of correlated failures.
We consider using multiple GPS receivers on the drone as
a failsafe mechanism for IMU failures. The core challenge
is in accurately computing the relative locations between
each receiver pair, and translating these measurements into
the drone’s 3D orientation. Achieving IMU-like orientation
requires the relative GPS distances to be accurate to a few
centimeters – a difficult task given that GPS today is only
accurate to around 1-4 meters. Moreover, GPS-based orienta-
tion needs to be precise even under sharp drone maneuvers,
GPS signal blockage, and sudden bouts of missing data. This
paper designs SafetyNet, an off-the-shelf GPS-only system that
addresses these challenges through a series of techniques,
culminating in a novel particle filter framework running over
multi-GNSS systems (GPS, GLONASS, and SBAS). Results
from 11 sessions of 5-7 minute flights report median orienta-
tion accuracies of 2◦ even under overcast weather conditions.
Of course, these improvements arise from an increase in cost
due to the multiple GPS receivers, however, when safety is of
interest, we believe that tradeoff is worthwhile.
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1. INTRODUCTION
Despite excitement, we are not yet ready for a world of
drones flying among people. Challenges of liability, regula-
tion, and limited societal acceptance all arise because drones
are still too dangerous for responsible use in public places.
A capstone obstacle is the untrustworthiness of inertial sen-
sors [1–5].

A drone’s inertial sensors, also called the Inertial Measure-
ment Unit (IMU), is akin to a human’s inner ear. Without a
good awareness of orientation and balance, a drone cannot
effectively modulate current to its rotors – even hovering
becomes impossible. In the best case, the drone may not take
off, or fall vertically from the sky. However, the worse case
is when the drone tries to correct for its poor sensory inputs,
and accelerates uncontrollably in an unintended direction
with even greater force. For a package delivery drone mea-
sured in 10s of kilograms, this might be deadly.

A natural response is to install redundant IMUs (i.e., ac-
celerometer, gyroscope, and compass). Given that each
sensor is relatively small, light, and inexpensive, this is an
easy fix – some commercial drones have already adopted
this [6, 7]. Unfortunately, redundancy only addresses unre-
liable hardware. Correlated noise sources, including motor
vibration, electromagnetic interference, and ambient ferro-
magnetic influences, remain as serious concerns [8–12].

To provide stronger IMU failover guarantees, we consider a
GPS based approach completely orthogonal to the fundamental
nature of IMU sensing. We install 4 GPS receivers at the
corners of a single drone – upon IMU failure, we utilize these
GPSs to estimate the drone’s 3D orientation. Put differently,
we apply GPS to estimate pitch, roll, and yaw, without any
inertial or magnetometer assistance.

The drone’s pitch, roll, and yaw can be expressed as a func-
tion of the pairwise 3D vectors between the GPS receivers –
as the drone flies, these vectors change with respect to the
Earth’s reference frame. SafetyNet’s core task is to precisely
estimate these 3D vectors. To achieve IMU-like accuracy
(≈ 1◦), the vectors need to be estimated at centimeter scale
precision. This precision needs to be upheld constantly over
time, across agile flight patterns, poor satellite SNR, and even
short periods of missing data.



Recent research [13, 14] has improved on Differential GPS
(DGPS) to achieve ≈ 15cm error for relative localization.
This is adequate for many on-road vehicular applications,
such as lane change detection, peer-to-peer car coordination,
etc. However, the accuracy requirement for drone orientation
is much higher. Multi-GPS orientation estimation techniques
have been proposed for ships, planes and low dynamic drone
flights [15–17]. However, extending them to commercial
drones of small form factor and rapidly changing orientation
is non-trivial and challenging. The demands are far stricter,
both in terms of accuracy and time-granularity of track-
ing. Finally, the estimation techniques must be lightweight to
be able to serve as a real-time IMU replacement during flights.

SafetyNet appropriately adopts ideas and techniques from the
mature GPS literature, and builds over them to mitigate the
challenges. The core additions, although closely interspersed
with existing techniques, can be distilled as follows:

(1) Manipulating measurements across pairs of GPS receivers,
satellites, and consecutive time points, to ultimately capture
the 3D orientation of the drone from 2 different perspectives.
Using these 2 perspectives to formulate an estimation prob-
lem, amenable to Kalman Filtering (KF). While GPS literature
is fraught with KF and measurement manipulations (called
“double differentials”), SafetyNet combines the double differ-
entials in a way that is novel to the best of our knowledge.

(2) GPS phase measurements are composed of an unknown
portion, called “integer ambiguity”. In attempting to resolve
this ambiguity, past work have adopted techniques akin to
“hard decoding”, where the most likely state-estimate is
propagated across time. We design the equivalent of “soft
decoding”, whereby top-K possibilities of the ambiguity are
propagated, each associated with an inferred probability. A
particle filter is used to execute this idea – the particle filter
degenerating back into the Kalman Filter when the ambiguity
is resolved confidently.

(3) We break away from the classical particle filter approach
and “adjust” the state of the particles based on available
measurements. This speeds up convergence of the system,
while requiring fewer particles (considerably reducing the
computational complexity). As a result, the overall SafetyNet
system lends itself to real time operation on today’s drone
hardware.

(4) Finally, SafetyNet is a complete system borne out of
significant engineering effort, including carrier-phase outlier
detection, integration of multi-satellite systems for robust-
ness, automatic baseline calibration, etc.

Our evaluation platform is composed of a 3DR octocopter (8
rotor) mounted with 4 off-the-shelf NEO-M8T GPS receivers,
all connected to a Raspberry Pi via USB. A GoPro camera
is mounted in the underbelly of the drone, facing vertically
downward – vision data serves as the ground-truth for both
IMU and GPS. We present extensive experimental data from
11 aggressive flight sessions, performed under a wide range
of weather conditions. Critically, our results demonstrate
comparable accuracy to IMU even under the most aggressive
aerial maneuvers within the capability of our drone.

Some Natural Questions
Is power consumption excessive with 4 GPS receivers?
While GPS receivers are indeed considered power hungry on
smartphones [18,19], we note that the drone’s physical flight
requires 1000x more power, requiring a separate LiPO bat-
tery [20] weighing 804 grams. Hence the marginal increase
in power from GPS is negligible.

Do GPS receivers add to the cost of drones? SafetyNet
is mostly needed for bigger drones carrying heavier pay-
loads (costly cameras, delivery packages). The cost of such
drones and their payloads easily justify the additional GPS
cost. Moreover, commercial drones already provide multiple
GPSes for redundancy [21] – we believe the additional GPS
cost should not be an issue.

What is the on-board IMU’s orientation accuracy? How
does it compare to SafetyNet? Results in this paper will
demonstrate comparable accuracy distributions between
SafetyNet and the on-board IMU, even at the 99th percentile.
To be specific, pitch and roll are slightly worse with Safe-
tyNet, but yaw is slightly better. This level of accuracy is
adequate as a fallback mechanism – upon IMU failure, the
drone could avoid aggressive maneuvers and fly back safely
to its base.

What if GPS also fails? Crash reports typically indicate IMU
failures [4]. This is because engine vibrations cause drift in
IMU sensors, accumulating error over time [8,11,12]. Drone
electronics might interfere with magnetometers [9, 10, 22].
However, none of these error sources affect GPS. While GPS
could still fail due to deliberate jamming or extreme weather
conditions, the possibility of both failing is naturally lower.

The rest of the paper expands on these techniques, ex-
perimental findings, and contributions. We begin with an
abridged technical primer on GPS processing (mostly derived
from Differential GPS and related techniques), followed by
system design, error mitigation, and an end-to-end system
evaluation.

2. GPS FOUNDATIONS
We present GPS foundations from first principles and end
with discussions on modern techniques. As a result, this sec-
tion is long. However, given that this paper builds over core
GPS algorithms, the material is necessary. We also believe the
material is easy to follow.

2.1 Global Navigation Satellite System (GNSS)
GNSS is the generic name given to satellite systems that pro-
vide localization services to receiver’s on earth. The Global
Positioning System (GPS) [23] is one example of a GNSS,
developed by the US Government during 1970-80s. GPS
consists of a constellation of 31 satellites orbiting the earth
at a height of 20,000 km. The satellites are simultaneously
and continuously transmitting unique pseudo-random noise
(PRN) sequences using CDMA at 2 different frequencies –
1575.42 (L1) and 1227.60 MHz (L2). They also broadcast
ephemeris data using which the (satellite) position and time
of transmission can be calculated. A GPS receiver on the
ground localizes itself by trilateration, i.e., measuring and



combining the time-of-flight (ToF) of PRNs from different
satellites. Velocity is computed from the doppler shifts from
each of the satellites.

GLObal NAvigation Satellite System (GLONASS) is another
GNSS system launched by Russia in the 1980’s [24]. Similarly,
GALILEO [25] is an European GNSS system currently under
development. Many GNSS receivers are capable of decoding
signals from multiple GNSS systems, providing increased ac-
curacy. This paper will also use such receivers and exploit the
advantages of satellite diversity.

2.2 GPS Localization and Error Sources
A GNSS receiver on the ground can compute its 3D loca-
tion, time, and velocity. The key idea is to measure various
attributes of the arriving signal (e.g., time of flight, phase,
etc.), and then apply statistical algorithms to estimate the er-
rors and ambiguities in measurements. We describe below an
overview of the techniques that underpin GPS; other GNSS
systems rely on similar techniques.

Pseudorange
When a satellite transmits a signal, it includes the starting
time of the transmission (obtained from its atomic clock).
The ground receiver records the time of reception also using
its less accurate local clock. The time-of-flight (ToF) is the
difference between these timestamps. When multiplied by
the speed of light, the result gives the rough distance to the
satellite, called pseudorange.

Pseudorange = ToF * (speed of light)

Of course, the measured ToF is inaccurate because the clock
of a typical GPS receiver is not synchronized to the GPS satel-
lites. The resulting error can be up to 300 km. In addition,
when the GPS signal enters the Earth’s atmosphere, it can
get delayed due to refractions in the Ionosphere and Tropo-
sphere. A signal also passes through a multipath channel,
adding more errors. Assuming the true range between a satel-
lite s and receiver i is ρsi , the measured Pseudorange P si , in-
clusive of all error sources, can be modeled as

P si = ρsi + cti − cts +A+Mi + εsi (1)

Here, ti and ts are receiver and satellite clock biases, respec-
tively, with respect to true time. A represents the range error
due to refractions in the atmosphere. Ms

i denotes Multipath,
εsi is receiver’s hardware noise and c is the speed of light.
In today’s systems, the satellite clock error ts is small1, and
cti proves to be the major source of error. Hence, cti is
modeled as an unknown, and ρsi is written as a function
of the unknown 3D receiver location ρi and the known 3D
satellite position ρs. This results in a total of 4 unknowns.
Once we have a lock with 4 satellites, the time bias and the
3D locations can be jointly estimated resulting in a position
fix. The ignored error sources, i.e., ts, A, M, and ε, could
contribute to an error of 1-4 meters, depending upon the
environmental conditions.

GPS receivers on phones and car dashboards use the above
techniques. However, higher accuracy applications such as 3D
1Satellites estimate the errors themselves from mutually ex-
changed signals as well as from ground sources.

orientation tracking require better performance. To this end,
modern GPS research has leveraged the phase of the arriving
signals, as detailed next.

Carrier Phase
Once a satellite lock is acquired, the phase of the arriving
signal, φsi , is constantly tracked by a phase lock loop (PLL).
The true range between the satellite and the receiver, ρsi , can
be expressed as a multiplicative factor of wavelength λ.

ρsi = λNs
i + λφsi (2)

Ns
i is an unknown integer, meaning that the PLL measure-

ment of φsi only captures the fractional part of the range.
However, due to atmospheric effects, multipath, and clock is-
sues, the above equation can be updated:

λφsi = ρsi + cti − cts +A+Mi + εi − λNs
i (3)

Estimating Ns
i is non-trivial and several algorithms have been

proposed [26,27]. We discuss more in Sec. 5.1.

One advantage of carrier phase is that its changes over time
can be tracked reliably by utilizing the doppler shift in the
signal [28]. Hence, φsi (t2) takes the same mathematical form
as Equation 3. Thus, if the initial value ofNs

i can somehow be
estimated, the tracking thereafter can be good. We now ex-
plain how today’s systems like Differential GPS (DGPS) with
this integer ambiguity, Ns

i , and other error sources.

2.3 Computing Differentials
Environmental error sources in Equation 3 are correlated over
short time periods and within small geographical areas (200
km). Thus, two GPS measurements across time can be sub-
tracted (or differenced) to eliminate some of these factors.
Similarly, simultaneous measurements from multiple GPS re-
ceivers can also be differenced. Differential GPS (DGPS) [29]
performs such operations on pseudoranges, while Real-Time
Kinematic (RTK) [30] applies differentials to carrier phase.
For our purpose of precise orientation tracking, the latter is
more relevant. To this end, we outline 4 kinds of carrier phase
differentials.

(1) Single Differentials across Receivers (SDij)
Consider the carrier phase equations for two GPS receivers i
and j from the same satellite s (let us ignore multipath and
noise).

λφsi = ρsi + cti − cts +As − λNs
i (4)

λφsj = ρsj + ctj − cts +As − λNs
j (5)

Differencing the above two equations yields the relative po-
sition between i and j with fewer error terms. Correlated
error sources of atmospheric delays and satellite clock biases
disappear.

λ∆φsij = ∆ρsij + c∆tij − λ∆Ns
ij (6)

Figure 1 illustrates the scenario. Assuming that the satellite
is far away, ∆ρsij can be approximated as ρijCosθ, where ρij
is the true relative position between i and j (called baseline
vector). Replacing ρijCosθ as a vectorial projection of ρij on
to the line of sight unit-vector l̂s of satellite s, we have:

λ∆φsij = ρij .l̂s + c∆tij − λ∆Ns
ij (7)



While some errors have disappeared 2, a function of the clock
bias errors, c∆tij still remains, motivating the need for dou-
ble differentials.

𝜃
i j

𝜌𝑖𝑗

s

Figure 1: ρsi − ρsj = ∆ρsij = ρij .l̂s

(2) Double Differentials across Receivers and
Satellites (DDsk

ij )
Given multiple satellites in range, the GPS ground receivers
i and j can perform the same measurements with satellite k.
Equation 7 can then be rewritten as:

λ∆φkij = ρij .l̂k + c∆tij − λ∆Nk
ij (8)

Subtracting the single differential equations 7 and 8, we have
a double differential (DD) as follows:

λ∇∆φskij = ρij .(l̂s − l̂k)− λ∇∆Nsk
ij (9)

The double differential (DD) eliminates the clock biases and
the residue is only the integer ambiguity terms. We will dis-
cuss the resolution of integer ambiguity in Section 5.1, but as-
suming that the ambiguities are magically fixed, this provides
us a reasonably precise estimate of relative positions (called
baselines) between receiver pairs. Ignored factors, including
multipath, noise, and antenna phase center errors, add up
to a few centimeters of error. Thus, if one of the receiver’s
absolute position is known in the granularity of millimeters,
the absolute position of the other receiver can be estimated
precisely as well. Real Time Kinematics (RTK) technology op-
erates exactly as above – it uses the accurately known location
of the reference receiver to calculate the location of the other.
Figure 2 shows the relative distance between two receivers
placed roughly 45 cm apart. Differencing techniques convinc-
ingly outperform naive subtraction of 3D GPS positions.

(3) Single Differentials across Time (SDt12)
Similar to differentials across receivers and satellites, we can
also perform differentials across time for the same receiver.
This can eliminate the integer ambiguity as follows:

λφsi (t1) = ρsi (t1) + cti(t1)− cts(t1) +As − λNs
i (t1) (10)

λφsi (t2) = ρsi (t2) + cti(t2)− cts(t2) +As − λNs
i (t2) (11)

2We are aware that differentials can amplify noise and multi-
path, however, since carrier phase noise is in the granularity
of few mm [31], we ignore noise in the rest of the paper. We
also assume multipath is not excessive, such as the drone fly-
ing low in Manhattan-like areas.
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Figure 2: Relative positioning using carrier phase and
double differentials is an order of magnitude more ac-
curate than naïve location differencing. Here, a 45 cm
baseline is correct within a few cm.

When no cycle slips occur (i.e., Ns
i (t1) = Ns

i (t2)) and given
that the satellite clock bias is well known and hardly changes
in small time intervals [t1, t2], we have

λ∆φsi (t12) = ∆ρsi (t12) + cti(t12) (12)

Since the distance to the satellite is very large compared to
the displacement of the receiver during [t1, t2], the satellite
location can be assumed fixed for this interval, incurring neg-
ligible errors with this approximation. The motion of the re-
ceiver is then represented in Figure 3. As described earlier,
∆ρsi (t12) can now be expressed as the projection of the rela-
tive motion vector ρi(t12) on to the line-of-sight unit vector l̂s
of the satellite. Thus, Equation 12 becomes:

λ∆φsi (t12) = ρi(t12).l̂s + cti(t12) (13)

𝜃
𝒕𝟏 𝒕𝟐

𝜌𝑖(𝑡12)

s

Figure 3: ρsi (t1)− ρsj(t2) = ∆ρsij(t12) = ρsij(t12).l̂s

Observe that ρsi (t12) (the relative displacement of the receiver
during [t1, t2]) and the receiver’s clock bias ti(t12) add up
to 4 unknowns. Measurements across 4 satellites can help
jointly estimate the relative displacement and clock bias. This
estimated relative displacement is quite accurate since the in-
teger ambiguityNs

i does not pollute it. We verified this with a
static receiver placed on the ground; the estimation resulted
in about 1 cm/s of motion, far more accurate than velocity
estimations from Doppler shifts.



(4) Double Differentials across Receivers and
Time (DDt12

ij )
Our final double differential combines receivers and time.
We compute the single differential between receivers ij from
Equation 7 but write them for consecutive time points t1 and
t2.

λ∆φsij(t1) = ρij(t1).l̂s + c∆tij(t1) + λ∆Ns
ij(t1) (14)

λ∆φsij(t2) = ρij(t2).l̂s + c∆tij(t2) + λ∆Ns
ij(t2) (15)

Assuming no cycle slips (we will relax this assumption later),
∆Ns

ij(t2) = ∆Ns
ij(t1), hence subtracting the above two equa-

tions eliminates integer ambiguity:

λ∇∆φsij(t12) = (ρij(t1)− ρij(t2)).l̂s + c.∆tij(t12) (16)

One may physically interpret this equation as the subtraction
of two vectors, where the first vector is a drone baseline at
time t1 and the second vector is the same baseline at t2. In
other words, this captures the relative motion of the drone
across time.

2.4 The Bigger Picture
We take-away 2 key points from the discussion on the differ-
entials:

• The double differentials across receivers and satellites
(DDsk

ij ) yields the drone’s baseline vectors at any given time
point (Equation 9). However, this estimate is still polluted
by integer ambiguity.

• The double differential across receivers and time (DDt12
ij )

yields the drone’s relative change in the baseline vectors dur-
ing flight (Equation 16). Importantly, this relative estimate is
free of the integer ambiguities.

Thus, we now have two separate estimates of the drone’s
3D baseline vectors, each with different error properties.
SafetyNet recognizes the opportunity of combining these
two noisy estimates to precisely track the drone baselines,
ultimately tracking orientation.

3. SYSTEM MODEL
SafetyNet will model orientation tracking as a state estima-
tion problem, where the state is defined as 3D orientation.
We formally define “3D orientation” first and then design the
model.

Figure 4 pretends 4 GPS receivers have been placed on a
drone – their locations denoted as ρ1, ρ2, ρ3 and ρ4. The
baseline vectors joining one of the receivers (say ρ4) to the
others can be defined as ρij = ρi − ρj . When the “baselines”
are aligned with the North-East reference axes, the baseline
matrix Bo can be written as:

Bo = [ρ41 ρ42 ρ43] (17)

Assuming that the magnitude of the baseline vectors are d1
and d2, we can expand Bo as:

Bo =

d1 0 d1
0 d2 d2
0 0 0

 (18)

Figure 4 also shows the rotation conventions of the 3 Euler
angles – pitch, roll and yaw. Applying these rotations on Bo

GPS4 GPS1 

GPS2 GPS3 

d1 

d2 

Roll 

Yaw 

Pitch 

Drone’ Heading 
Direction 

North 

East 

Figure 4: The drone baseline vectors ρ41 and ρ42 aligned
with Earth’s reference frame.

will obviously yield the new baseline matrix, B. For all our
results, we will express rotations in terms of the Euler angles
(i.e., degrees), which are intuitive to understand. However,
for the purpose of mathematical efficiency, we will use quater-
nion mathematics, an alternative representation to Euler an-
gles. Briefly, the baselines at an arbitrary orientation, called
quaternion q, can be expressed in terms of the initial orienta-
tion qo (aligned with reference axes), as below:

ρij(q) = A(q)′ρij(qo) (19)

Here A(q) is the rotation matrix associated with the orienta-
tion quaternion q. Similarly, extending the effect of rotations
to the entire baseline matrix, we have:

B(q) = A(q)′Bo (20)

Effectively, orientation is about estimating the rotation matrix
A(q) using projected measurements of B(q) on various satel-
lite directions. Details on conversion between quaternions,
Euler angles and rotation matrices can be found in [32]. Re-
gardless of these mathematical conversions, the core concep-
tual question still pertains to estimating the matrix B at any
given time.

4. SYSTEM DESIGN: PHASE 1
We adopt a Bayesian filtering approach for tracking drone ori-
entation. Figure 5 shows the model: (1) A state transition
function, derived from the incremental changes in orienta-
tion (DDt12

ij ), models the next state of the drone. Recall that
these changes are affected by the hardware noise and mul-
tipath errors. (2) A measurement function, (DDsk

ij ), reflects
the absolute orientation of the drone at any given time. Of
course, this measurement is polluted by integer ambiguity.
We adopt a Kalman Filter to combine the uncertainties from
the transition and measurement functions, and track the most
likely state of the system through time. We describe this ba-
sic design first. Then we focus on resolving the error sources
(such as integer ambiguity, cycle slips, and missing data), and
redesign the framework to accommodate these optimizations.
Our final design is an “adjusted” particle filter algorithm that
tracks drone orientation with consistent accuracy.

4.1 State Transition Model
The relative baseline changes over time are directly obtained



t1 
[P1 Y1 R1] 

t2 
[P2 Y2 R2] 

t3 
[P3 Y3 R3] 

State Transition: 
Relative ( DDij

t12 ) 

Measurement: 

Absolute ( DDij
sk) 

State: [P R, Y]  
Pitch, Roll, Yaw 

Figure 5: Bayesian filtering approach to tracking orienta-
tion state over time.

from Equation 16, copied for convenience:

λ∇∆φsij(t12) = (ρij(t1)− ρij(t2)).l̂s + c.∆tij(t12) (21)

Omitting details, we rewrite with quaternions:

λ∇∆φsij(t12) = ρij(qo)bA(q1).l̂s×cδθ + c.∆tij(t12) (22)

where, q1 is the orientation quaternion at time t1, δθ is the ro-
tation vector [33] associated with quaternion δq. b ×c is the
vector cross operator [34]. We now solve Equation 22 for var-
ious satellites s and GPS receiver-pairs ij using least-squares
estimation. The result yields an estimate of the rotation vec-
tor δθ (hence δq) between two time points t1 and t2. We can
thus estimate the new orientation quaternion q2 as:

q2 = δq ⊗ q1 (23)

Here, ⊗ is the quaternion multiplication operator. When
translated back to Euler angles, the result is the relative
orientation change – pitch, yaw, and roll – from one state to
the next. As mentioned earlier, this estimate is polluted by
hardware noise and multipath.

4.2 Absolute Orientation Measurement
Equation 9 showed that double differentials across receivers
and satellites (DDsk

ij ) are estimates of the absolute baseline
vectors of the drone. While they cancel out clock bias errors,
they leave the integer ambiguities as follows:

λ∇∆φskij = ρij .(l̂s − l̂k) + λ∇∆Nsk
ij (24)

Translating to quaternions again, using very similar conven-
tions as described earlier, we have:

λ∇∆φskij − ρij(qo).A(qn).(l̂s − l̂k) =

ρi,j(qo).bA(qn).(l̂s − l̂k)×cδθ + λ.∇∆Nsk
ij

(25)

We develop techniques for resolving integer ambiguities in
Section 5.1. For now, let’s assume they are resolved – then,
we are left with a set of linear equations over different satel-
lite pairs sk and baselines ij. By solving them using standard
Least Squares Estimation (LSE), the rotation vector δθ and
associated quaternion δq can be obtained. Hence the orienta-
tion q is.

q = δq ⊗ qn (26)

Here qn is an initial orientation estimate for the purposes of
linearization of Equation 25 (usually comes from the tran-
sition model). Note that this estimate q is absolute in the

earth’s reference frame, since the satellite locations sk are
both known in that reference frame.

4.3 Applying Extended Kalman Filter (EKF)
Kalman filter is an estimation algorithm to systematically
combine erroneous observations about a system state. In our
case, since the transition function is intrinsically non-linear
(because of the conversion from rotation matrices to quater-
nions), we make linearized approximations using Extended
Kalman Filter (EKF) [35]. We briefly sketch the methodology
here.

Transition: The state transition function in Equation 22 can
be re-written in a generic non linear model as:

ˆqk+1 = f(qk) + wk (27)

Here, k and k + 1 are two successive time points, f is of the
(non-linear) form:

f = δq ⊗ qk (28)

and wk is the estimated process noise derived from the GPS
signal SNR. δq is the quaternion of δθ in Equation 22. Now,
linearizing Equation 27 around the estimated rotation vector
associated with quaternion qk, we have:

δθk+1 = F.δθk + wk (29)

where F is given by ∂f
∂θ
| ˆθk+1

Measurement: As with the transition function above, the
measurement function can be Equation 25, written in the fol-
lowing form:

y − yo = H.δθk+1 + vt (30)

where k used for both satellite and sample index. vt is the
measurement noise derived from GPS SNR.

y = λ∆φskij − λ.∆Nsk
ij (31)

yo = ρij(qo).A( ˆqk+1).(l̂s − l̂k) (32)

H = ρij(qo).bA( ˆqk+1).(l̂s − l̂k)×c (33)

Equations. 29 and 30 can now be combined using an Ex-
tended Kalman Filter for a refined estimate of δθk+1. Its as-
sociated quaternion δqk+1 can then be used to estimate the
most likely orientation quaternion qk+1:

qk+1 = δqk+1 ⊗ ˆqk+1 (34)

While the noise terms of Transition and Measurement models
are not completely independent, we introduce Particle Filters
later (Section 5.3) to lift the Gaussian assumption of Kalman
Filters.

5. RESOLVING AMBIGUITIES: PHASE 2
The above EKF has been designed under the convenient
assumption that integer ambiguity and cycle slips have been
resolved. However, this resolution is challenging, as evident
from the numerous papers written on this topic [36–39].
Since these error sources seriously affect drone orientation,
we comprehensively address them next.



5.1 Resolving Integer Ambiguity
Recall from Equation 2 that the Phase Lock Loop (PLL) only
measures the fractional part of the range, leaving an un-
known of λN . Once the drone is flying, additional multiples
of wavelengths can also accumulate, called cycle slips. We
first describe ways to mitigate the initial λN and discuss cycle
slips thereafter.

Note that we do not need to estimate N since we are not
computing the actual range (or location) of the GPS receiver.
Since we only care about orientation, we have been oper-
ating in the space of differentials. Thus, when we compute
Ns
ij = Ns

i −Ns
j , followed by Nsk

ij = Ns
ij −Nk

ij , we recognize
that Nsk

ij are also integers. Our goal is to estimate these Nsk
ij

integers, for all combinations of ij and sk.

Our core intuition is to compute a Cos function on the value
of 2πNsk

ij ; since Nsk
ij should be an integer, Cos(2πNsk

ij )
should equal 1. Now, let’s say this Cos function is summed
up over all the possible values of Nsk

ij , then we have∑
ij,sk Cos(2πN

sk
ij ). If there are ψ possible tuples of

< ij, sk >, then the summation should add up to ψ. Now,
this summation can be rewritten as a function of orientation
q as follows:

cos(2πNsk
ij ) = cos(2π

λφskij − ρij(qo).A(q).(l̂s − l̂k)

λ
) (35)

Here Nsk
ij is derived from a combination of Equations 9 and

19. Then,

M(q) =
∑
ij,sk

cos(2πNsk
ij ) (36)

In an ideal case, the correct q should make the RHS of Equa-
tion 36 equal to ψ. However, given that phase φskij in Equation
35 has errors, for a given q, the corresponding values of Nsk

ij

are not all 1. When these Nsk
ij are plugged into Equation 36,

the value is less than ψ. Hence, we search across all values of
q at the granularity of 5 degrees and pick a qcoarse, such that

M(qcoarse) = max
q
M(q) (37)

5 degrees is not an arbitrary design choice. Rather, 5 de-
gree is a function of GPS signal wavelength and the diago-
nal of the drone, together ensuring that the estimated values
of Nsk

ij do not over or undershoot an integer by more than
0.2 with high probability. So long the offset is less than 0.5,
the actual Nsk

ij values can be estimated by rounding off. The
equation below shows our final estimation of integer ambigu-
ity from qcoarse.

N̂sk
ij = b

λφskij − ρij(qo).A(qcoarse).(l̂s − l̂k)

λ
+ 0.5c (38)

Our results show that when the drone is static and ready
to take off, the estimates of Nsk

ij are correct (also, the Cos
function is close to 1). However, once the drone starts flying,
and especially after sharp maneuvers, integer ambiguity
again builds up. This is because poor SNR, exacerbated by
sudden phase changes in the BPSK GPS signal, causes the PLL
to lose lock. The result is both full and half cycle slips3. Now,
even if qcoarse correctly estimates a large fraction of Nsk

ij , the
3Half cycle slips occur because some PLLs square the signal to
remove BPSK messages; squaring makes the correlator match

small erroneous fraction influences subsequent estimation
and the orientation diverges over time. Moreover, half cycles
also increase the search space by 8x since the search is 3-
dimensional (yaw, pitch, roll). Thus, coarse grained attitude,
qcoarse, can no longer be used for consistent tracking.

Fig.6 compares the cycle slip percentage for static and flying
drones – we use the view from the drone camera as the
ground truth [40] (described later in Section 6). Evidently,
cycle slips occur much more frequently (almost once every
second) when the drone is flying. This means that even our
assumption in Equation 12 – that Ns

i (t2) = Ns
i (t1) – is not

necessarily true, and can drastically pollute estimates. To this
end, SafetyNet approximates qcoarse for Equation 38 from the
estimate of the State Transition Model in Section 4.1. While
this is not perfect, the Outlier detection and Particle Filter
techniques discussed next will help absorb most errors.
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Figure 6: Cycle slips occur more often during flight.

5.2 Cycle Slip Detection
Needless to say, our cycle slip detection scheme has to be
quick (to be able to run every few seconds). Towards this
goal, we form temporal differential measurements from
multiple satellites as shown in Equation 13. After compen-
sating for known satellite biases ts(t12), we are left with four
unknowns – 3D change in position ρi(t12) and clock bias
difference ti(t12). Solving these using Robust Least Squares
(RLS) [41] will typically isolate the outliers, with Error Resid-
uals for the inliers being less than 2cm. Our transition model
(Section 4.1) incorporates corrections from this module.
While there is a possibility that RLS may not converge, we
use GLONASS satellites to boost the redundancy.

Unlike GPS satellites, GLONASS uses FDMA, i.e., satellites
transmit in different frequencies. Since the wavelengths are
now λs and λk from satellites s and k, the integer ambigu-
ity terms do not group themselves into a single integer in the
DDsk

ij double differentials. Hence, we use GLONASS only for
DDt12

ij , since the signals from the same satellite cancel across
time, t12. However, when even GLONASS+GPS fails (perhaps
because of too few satellites under poor weather), we resort
to Particle Filters (Section 5.3).

5.3 Unified Particle Filter Framework

the original signal twice within a signal period, indicating
phase change. However, this squaring effectively halves the
wavelength, meaning that Nsk

ij is now multiples of 0.5.



The net result of all the above techniques can be summarized
as follows: the orientation q, and hence the values of Nsk

ij , are
mostly correct, and the Kalman filter can track it well. How-
ever, occasionally q is incorrect, and this error accumulates over
time causing complete divergence. Figure 7 illustrates an ex-
ample of the drift with Kalman Filters (KF). We bring Parti-
cle Filters to better handle these cases since multiple parti-
cles (i.e., orientation states) can be propagated through time,
while relaxing linearity and Gaussian assumptions required
for KF. Thus, SafetyNet adopts a hybrid approach, i.e., the
system uses Kalman Filters in general but invokes a particle
filter when:

• Orientation estimates have poor confidence based on
the summed Cos metric in Equation 36.

• Missing data in one or more of the receivers derails the
state transition function.
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Figure 7: KF based orientation drifts away due to poor
SNR or missing data.

Figure 8 summarizes the flow of events. When the confidence
on q (based on the Cosmetric) is high, SafetyNet continues to
run the Kalman filter. When low, we select K values of orien-
tation q – the values whose corresponding Cos metric ranks
in the top-K. We initialize K particles at each of these orien-
tation states and update each particle based on the transition
and measurements functions. These particles are essentially
“trackers” of different integer ambiguities, and we propagate
them until the Cos metric for one becomes high. Now, if the
particles are too close to each other – within 3◦ – we merge
these particles into one. If a particle exhibits extremely low
weight, we also remove that particle. If merging or removal
leaves one particle, SafetyNet switches back to Kalman filter-
ing again. Else, the confidence function is computed again. If
the confidence function is low, more particles are added and
resampled – resampling is performed such that the resulting
particles are an equal mix of the (highest weighted) current
and new particles. However, if the confidence is high, adding
and resampling is not necessary. The process repeats until the
system converges to a single particle.

5.4 Adjusted Particle Filter (APF) Design
We propose an improvement to the particle filter design.
The opportunity arises from the observation that in the
conventional particle filter, a particle’s weight is typically pro-
portional to its likelihood function (i.e., proximity to the true
state). Thus, when the system resamples, the concentration
of particles are proportionally greater at the higher weight

Figure 8: Flow chart of unified particle filter

particles. Over time, the hope is that one of the particles
would converge to the correct state. However, we ask: why
not move the particle to a state that maximizes the likelihood.
In fact, given that the error variances of the transition and
measurement functions are known, the best estimate can
be computed as a combination of the two. We could move
each particle to the “best” state in its neighborhood, and then
perform the resampling step.

Figure 9 illustrates the idea for a case of three particles.
The middle particle is propagated to time time1 using the
transition model DDt12

ij . Similarly, the measurement func-
tion DDsk

ij produces an estimate of the new state. The
transitioned and measured states along with their error dis-
tributions are depicted. The two estimates are combined
using a Kalman filter like approach, and the particle “ad-
justed” to this best state. This particle is then propagated
further to time time2, which now has a smaller error variance.

We note that each particle essentially tracks a particular Nsk
ij

integer ambiguity vectors. As a result, every carrier-phase
measurement yields distinct orientation q for each of these
vectors. The benefits arise because: (1) For the correct inte-
ger ambiguity vector, the error properties of the measurement
function becomes Gaussian. Hence, the combining process
indeed is like a Kalman filter, leading to faster convergence.
(2) For incorrect integer ambiguity vectors, the gaussian error
properties will not hold. Moreover, the transitioned particle
will be adjusted towards a wrong state because of incorrect
integer ambiguity resolution. Thus, the net outcome is faster
convergence for the correct ambiguities, while disappearing
particles for incorrect ambiguities. Figure 7 shows the efficacy
of the Adjusted Particle Filter (APF) even when KF diverges.
The next section presents more detailed results.

6. EVALUATION
Our evaluation will comprehensively compare SafetyNet’s ori-



Figure 9: Adjusted Particle Filter (APF) results in faster
reliable convergence even with few particles.

entation accuracy against two reference points: (1) the real
IMU of a professional-grade drone (using algorithms based
on [42]) and (2) high-precision estimates of ground truth
through computer vision, which is orthogonal to both iner-
tial and GPS-based sensory modalities. All results are from
11 flight sessions of ≈ 6 minutes each, across a diverse set of
weather and satellite conditions; we will also report 95th per-
centile performance to capture robustness. We aim to answer
the following critical questions.

• What is SafetyNet’s accuracy in estimating a drone’s pitch,
roll, and yaw during flight? (Figures 11, 12a)

• Is SafetyNet’s accuracy comparable to IMU, relative to
ground truth from computer vision? (Figure 12(b,c))

• Is SafetyNet robust to weather impairing satellite visibility?
(Figures 13, 14)

• Is SafetyNet robust under aggressive maneuvers? (Fig-
ures 11, 15)

• Is SafetyNet computationally practical for embedded, real-
time applications? (Figure 16)

• Which modules of SafetyNet provide the largest perfor-
mance gains? (Figure 17)

Our results show that SafetyNet demonstrates consistently de-
pendable performance in each measure, and that all of Safe-
tyNet’s modules are critical to the net outcome. We begin by
describing the platform and methodology.

6.1 Experimental Platform and Methodology
We conduct all experimentation using a 3DR X-8 octocopter
(8-rotor), pictured in Figure 10. “X” implies 4 arms with
unequal spacing – yielding greater stability of roll angle
versus pitch (recall that pitch is the dominant motion when
an airplane takes off or lands, roll is dominant when the
plane makes a left/right turn). Two rotors attach to each
arm: one above, one below. To the X-8, we mounted 4 u-Blox

Figure 10: Four off-the-shelf GPS modules, a Raspberry Pi,
and a GoPro on an X-8 Octocopter

NEO-M8T multi-GNSS receivers, adjacent to the top motor of
each arm. We also mounted a Raspberry Pi 2 near the drone’s
center of mass – the GPS receivers transfer the data to the Pi
via USB at 5 Hz. IMU data at 10 Hz is recovered as binary
logs from the X-8’s USB interface. 4

A GoPro camera, affixed to the underbelly of the airframe,
points vertically downwards. The GoPro captures video at 30
fps with a fast shutter (to minimize motion blur and rolling
shutter effects). We use ffmpeg to sample the video into
stills at 7.5 fps (every fourth frame). We post-process the
images using Pix4D: advanced commercial photogrammetry
software that uses structure from motion (SfM) to perform 3D
registration of each frame. From Pix4D’s outputs, we can re-
cover a high-precision estimate of drone attitude (accuracy
≈ 0.05◦ [40, 43]). post-process the images using Pix4D: ad-
vanced commercial photogrammetry software that uses struc-
ture from motion (SfM) to perform 3D registration of each
frame. Note: structure from motion would not be practical as
a realtime IMU replacement – each 5-7 minute flight requires
several hours of processing on a server of 16 CPU cores, 32
GB RAM, and CUDA on a high-end NVIDIA GRID K2 GPU.

6.2 Data Alignment for Comparison
SafetyNet and IMU data have precise GPS timestamps but
the GoPro does not – this makes precise comparison difficult.
Therefore, at the beginning/end of each flight, we point the
GoPro towards an Android phone displaying the current GPS
time. Once the video frame is synchronized with the GPS
time, we extrapolate and time stamp every frame – this is
possible because we extensively verified that the inter-frame
spacing of the GoPro is uniform (33.33 ms at 30 fps). Still,
residual error remains from unpredictable OS delay in the An-
droid application displaying the current time. We align the
yaw angle sequence between SafetyNet and vision. We also
perform this synchronization procedure with IMU to elimi-
nate residual misalignment. Finally, we align the GoPro and
GPS X-Y axes by finding the appropriate rotation matrix that
eliminates offsets in yaw, pitch, and roll. We now present
4Experiments were conducted as per FAA regulations. Oper-
ator trained by a general aviation pilot, over relatively vacant
fields, with flight height not exceeding 45m.
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Figure 11: Time trace of SafetyNet orientation compared with Vision (a) Pitch (b) Roll and (c) Yaw. SafetyNet can track
highly aggressive maneuvers well
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Figure 12: (a) CDF of errors for an hour of aggressive flight data shows the effectiveness of SafetyNet. (b) Comparison of
SafetyNet’s Pitch/Roll against IMU’s. (c) Comparison of Yaw against IMU. SafetyNet outperforms IMU in Yaw by 4x while
Pitch/Roll is 30% worse.

results.

6.3 Performance Results
(1) Overall Tracking Accuracy: Figure 11 depicts Safe-
tyNet closely tracking (a) pitch, (b) roll, and (c) yaw against
Pix4D/vision. Figure 12(a) aggregates 60 minutes of fly-
ing data: median error of 2.07◦ for pitch, 1.38◦ for roll,
and 0.61◦ for yaw. Higher accuracy for roll versus pitch is
attributable to our X-shaped drone: the x-axis baseline is
46% longer than the y-axis. Accordingly, roll is 49% more
accurate. As expected, yaw accuracy is higher than pitch or
roll as it is relatively less subject to GPS dilution of precision
from satellite geometry.

(2) Comparison with IMU: Figure 12(b and c) compares the
accuracy of SafetyNet with IMU, treating Pix4D/vision results
as ground truth. SafetyNet is relatively less accurate (≈ 30%
worse) than IMU in pitch and roll. However, SafetyNet
comprehensively outperforms IMU in yaw angle accuracy
(≈ 300% more accurate / one-quarter error). Inferior yaw
accuracy of IMU, relative to pitch and roll, is expected due
to reliance on magnetometer versus the accelerometer grav-
ity vector. Again, SafetyNet’s superior yaw performance is
expected. We are encouraged that SafetyNet’s pitch/roll
accuracy is acceptable as a plausible IMU substitute.

(3) Robustness to Weather: Figure 13 plots median accu-
racy over flights/flying conditions. Error bars denote 5th
and 95th percentiles. Flights 7-11 were conducted in fog.
Despite fewer detectable satellites, SafetyNet performance
remains consistent and robust. To emulate extreme weather
scenarios, Figure 14 shows accuracy with varied fractions of
satellites artificially removed from processing. The medians

and 75th percentiles are mostly robust to satellite skipping.
As evident from the 95th percentile line, worst case errors
start increasing at 40%. Having fully exploited the u-Blox
NEO-M8T multi-GNSS capabilities, SafetyNet maintains high
satellite count, increasing reliability.

1 2 3 4 5 6 7 8 9 10 11

Flight Number

0

2

4

6

8

10

E
rr

o
r 

(d
e
g
)

Pitch

Roll

Yaw

Figure 13: Accuracy in SafetyNet is consistent over differ-
ent flights under diverse satellite visibility

(4) Robustness to Maneuvers: Figures 11 and 15 show
that SafetyNet tracks aggressive maneuvers. Median error
along with 5th and 95th percentiles is plotted as a function
of the pitch/roll/yaw rates. Tracking of extreme motions
(120+◦ per second) becomes challenging because of satellite
blockage, cycle slips, and missing samples. Yet, SafetyNet’s
Particle Filter Framework is robust enough to even the most
challenging motions.
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Figure 14: Number of outliers can increase with fewer
satellite availability, but SafetyNet maximally exploits
multi GNSS satellite availability
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Figure 15: SafetyNet’s accuracy degrades gracefully with
aggressiveness

(6) Implementability: Figure 16 plots the 95%-ile error in
pitch, roll and yaw as a function of number of particles. There
are two take-aways: (1) SafetyNet’s particle filter dramati-
cally reduces error and (2) only few particles are required
– the introduction of only a second particle yields a 300%
improvement for pitch/roll. We need not trade away the
real time implementability of Kalman filters to gain accuracy.
SafetyNet can be implemented in realtime on embedded
hardware.

(7) Gain by Module: Figure 17 isolates error reduction from
each SafetyNet module: Integer Ambiguity resolution (IA),
Outlier elimination (OT), Kalman Filter (KF), Simple Particle
Filter (PF), Adjusted Particle Filter (APF) and multi-GNSS
(GS). IA suffers from cycle slips that OT can eliminate (7x
gain in median and 2.5x at 95th). After OT, some wrong
integer ambiguities may remain causing KF drift with slow
convergence back to a correct state. APF enables rapid con-
vergence (100% median accuracy gains over both PF and KF/
error reduced by 50%). Integrating GLONASS and SBAS [44]
improves median performance and dramatically reduces
worst case errors (33% median gain, 6x gain at 95th).

7. RELATED WORK
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Figure 16: SafetyNet can eliminate outliers with very few
particles
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Figure 17: Errors vs Optimization Modules – Integer Am-
biguity Resolution (IA), Outlier Elimination (OT), Kalman
Filter (KF), Simple Particle Filter (PF), Adjusted Particle
Filter (PF) and Multi-GNSS (GS) together contribute to the
performance of SafetyNet

Relative GPS: Today’s state of the art in GPS relative localiza-
tion are [13,14], which outperform DGPS [29] and RTK [30].
Among these, APT in [14] is closer to SafetyNet and also uses
carrier phases combined with double differentials; they
achieve sub-meter level accuracy. SafetyNet’s differences
include: (1) A completely different mathematical model
compared to the modeling strategy used for relative localiza-
tion in APT. (2) A notion of “soft decoding” where multiple
uncertainties are propagated from the Particle Filter’s Cos
metric in SafetyNet. SafetyNet also picks new particles from
the angular domain resulting in dramatic reduction of search
space, whereas the search cube based recalibration in APT
is highly complex. This also facilitates meeting the high
accuracy requirement in SafetyNet under a more challenging
cycle slip rate. (3) SafetyNet incorporates the inclusion of
GLONASS, which is non-trivial due to satellites operating
on different frequencies (FDMA). (4) SafetyNet addresses
half-cycle slips by resolving integer ambiguities in steps of 0.5
– critical here, given the higher accuracy requirement (1-2
cm) compared to APT.

Orientation/Velocity from Multi-GPS: While several works
have considered GPS for orientation of spacecraft, full-scale
aircraft, or ships [15,16,45], none address the dynamic errors



for a small drone. While [17] controls a model helicopter
using multi-GPS, the motions are highly constrained (slow
changes less than 10◦). SafetyNet is unique in addressing
dynamic integer ambiguities across an aggressive flight (an-
gular changes up to 150◦/s). Solutions using single receiver,
multi-antenna GPS [46] will also benefit from SafetyNet for
dynamic error handling. Work in [47] uses a moving antenna
for orientation estimates. While interesting, the authors note
that the motion has to be slow enough to not break GPS
locks, hence it is not possible to adopt such solutions for high
dynamic flights. Angular velocity determination using multi-
GPS is explored in [48, 49]. However, SafetyNet is unique in
integrating angular velocity with double differentials (across
time and satellites) into a Particle Filtering framework.

Multi-GNSS Fusion: Several works have attempted to
fuse GPS with GLONASS satellite systems for enhanced
relative positioning [50–52]. However, each use pseudo-
range data only or assume a specialized multi-antenna
GPS/GLONASS receiver with a single clock. SafetyNet ex-
ploits time-differenced carrier phase measures to leverage
GLONASS data in double differentials with off-the-shelf
multi-GNSS receivers.

Reliability for IMU: Drift on gyroscopes [53–55] and in-
terferences to magnetic compasses [56–58] is well known
in smartphone applications and many of these researchers
have proposed application specific inferencing techniques to
handle them. While the same error properties can extend to
drones as well, the results could be catastrophic and error
handling is very critical. Work in [8] proposes inferencing
techniques for correcting IMU errors from engine vibrations
for drones. Similarly, [9] models magnetic sources of inter-
ferences to nullify the effect on IMU. Work in [11] models
above similar noisy sources affecting IMU updates into a
sophisticated Kalman filter. In contrast to these works Safe-
tyNet offers a completely orthogonal solution relying only on
GNSS receivers.

IMU/GPS fusion: Fusion of IMU sensors like accelerometers,
gyroscopes, magnetometer and GPS has been extensively
used for orientation tracking [59]. Extended Kalman Fil-
ters [35,42,60,61] have been used for handling non-linearity.
UKF, Sigma Point Filters and Particle filters have also been
used for better accuracy with higher complexity [62–65].
While complementary to SafetyNet in reducing orientation
uncertainty, these do not address IMU failure.

Orientation from Vision: Pitch/roll angles can be estimated
by tracking the horizon [66,67]. Optical flow [68], stereo vi-
sion [69] and feature tracking [70–73] have been proposed
as vision-based IMU supplements. Vision techniques are com-
plementary to SafetyNet. Offline, we leverage high-fidelity
structure from motion to validate our accuracy.

8. FUTURE WORK
We briefly discuss a few points of future work.

• Fusion with IMU: SafetyNet is a completely orthogonal
solution, but it is possible to combine GPS with IMU for even
better accuracy. We leave this to future work.

• GPS Sampling Rate: Sampling rate of our GPS modules

was only 5 Hz, but all of our techniques are fundamentally
applicable to high rate GPS receivers.

• Latency: The processing power on drones continues to
evolve – various drones offer diverse computing capabilities.
Our future work would need to carefully profile the latency to
characterize the kinds of drones that could execute SafetyNet
in real-time.

• Vehicles: Orientation estimation of self driving cars can also
benefit from SafetyNet, adding an extra layer of reliability.

9. CONCLUSION
Grand visions abound for applications of drones. While
Amazon, Google, and others have made great strides towards
package delivery, etc., drones remain an unacceptable hazard
to persons and property. By comprehensively addressing IMU
failure through GNSS – a failover completely orthogonal to
inertial methods, SafetyNet progresses the state of the art in
drone safety.
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