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ABSTRACT

This paper explores a future in which drones serve as exten-
sions to cellular networks. Equipped with a WiFi interface
and a (LTE/5G) backhaul link, we envision a drone to fly in
and create a WiFi network in a desired region. Analogous
to fire engines, these drones can offer on-demand network
service, alleviating unpredictable problems such as sudden
traffic hotspots, poor coverage, and natural disasters. While
realizing such a vision would need various pieces to come
together, we focus on the problem of “drone placement”. We
ask: when several scattered users demand cellular connectiv-
ity in a particular area, where should the drone hover so that
the aggregate demands are optimally satisfied? This is essen-
tially a search problem, i.e., the drone needs to determine
a 3D location from which its SNR to all the clients is maxi-
mized. Given the unknown environmental conditions (such
as multipath, wireless shadows, foliage, and absorption), it is
not trivial to predict the best hovering location.

We explore the possibility of using RF ray tracing as a hint
to narrow down the scope of search. Our key idea is to use
3D models from Google Earth to roughly model the terrain
of the region, and then simulate how signals would scatter
from the drone to various clients. While such simulations of-
fer coarse-grained results, we find that they can still be valu-
able in broadly guiding the drone in the right direction. Once
the drone has narrowed down the 3D search space, it can
then physically move to quickly select the best hovering lo-
cation. Measurement results from a WiFi mounted drone,
communicating with 7 clients scattered in the UIUC campus,
are encouraging. Our early prototype, DroneNet, reports 44%
throughput gain with only 10% measurement overhead com-
pared to a full scan of the entire region.
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1. INTRODUCTION

Outdoor cellular network traffic is steadily on the rise.
Video is already the dominant application for cellular net-
works [1,2]. In the near future, in-vehicle entertainment [3],
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uploads from numerous cameras, and various IoT appli-
cations (including smart cities, precision agriculture [4],
and wearables [5]) will further add to the bandwidth pres-
sure. Predictions indicate a 1000x increase in wireless data
demand by 2020 [6, 7].

While technological advances in MIMO, beamforming, spec-
trum sensing, and others have coped with this pressure thus
far, there is wide agreement that such opportunities are sat-
urating. Users are beginning to experience spatial or tempo-
ral degradations in the quality of service. For instance, ar-
eas with tall buildings are suffering from poor SNR due to
wireless shadows [8]; flash crowds at political rallies, sports
events, and other social occasions are creating sudden traffic
spikes [9]; natural disasters are destroying local network in-
frastructure, warranting a quick and temporary replacement
service. Solving these problems with additional tower instal-
lations does not scale—the cost of over-provisioning is becom-
ing excessive, exacerbated by the difficulty in finding instal-
lation sites in dense urban regions. This paper takes an ex-
ploratory step and envisions drones as “elastic extenders” of
cell towers. We call our system DroneNet.

DroneNet’s model of operation bears similarity to cloud com-
puting. Clouds leverage statistical aggregation opportunities,
i.e., given that only a fraction of clients are requesting re-
sources at a given time, the total resources in the cloud need
not scale with the number of clients. Yet, any given client can
still avail powerful resources from the cloud. Drones bring
similar flexibility to the wireless world. Not every user ex-
periences dead zones at a given time; neither are all users
located in a flash crowd. Moreover, traffic demand exhibits a
power law behavior; few users form the majority of demand
at a time. Hence, a limited set of drones may be adequate to
address all the dynamic needs, leading to a win-win situation
for both the clients and network service providers.

Figure 1 illustrates a toy example. It shows multiple possible
locations at which the drone can hover. From any of these
locations, the drone connects to the clients with a WiFi link,
while the backhaul operates over a 4G/LTE link back to the
cell tower. As mentioned earlier, the core research question
pertains to determining the best hovering position. Observe
that moving closer to the ground improves client proximity,
however, the multipath and shadowing effects get severely ex-
acerbated. Moreover, the line of sight (LOS) to the cell tower
also gets disrupted. Moving vertically higher offers better LOS
to clients and the cell tower, but at the expense of longer dis-
tance to these clients, reducing data rates. Lateral movements
also pose tradeoffs — for instance, the left and right-most posi-
tions in the Figure 1 both offer LOS paths to one of the clients
but blocks the other. A combination of lateral and vertical
movements can bring the drone to a position that maximizes
a given function of SNR. Our goal is to efficiently determine
this location.



Figure 1: Drone locations present tradeoffs: Closer to
the ground aggravates multipath and blocks line of sight
(LOS) to the cell tower, while vertically higher place-
ment increases distance to clients. Lateral movements can
achieve LOS to some clients but get blocked from others.

A brute force solution would be to fly the drone and conduct
SNR measurements to empirically search for the optimal loca-
tion. However, a large 3D search space — say 2 or 3 city blocks
in Chicago — makes this approach prohibitively time consum-
ing. Movements in clients and changes in traffic patterns will
occur at faster time scales, rendering this brute force search
useless. Hence we require a solution that is lightweight and
quick. Simple strategies like hovering at the centroid of a
group of clients are unsuitable due to the non-monotonous
relation between distance and SNR. Results from historical
searches are also not useful since each new situation is some-
what unique in its placement of clients and the type of traffic
demands.

We explore the possibility of using RF ray tracing as a hint to
narrow down the scope of search. Our key idea is to model
the dominant structures located in an area—such as the build-
ings and trees—to roughly model the terrain of the region,
and then simulate how signals would bounce and scatter from
the drone to the various clients. Of course, such simulations
yield coarse-grained results since the simulated SNR is sen-
sitive to centimeter-scale errors. Nonetheless, we find that
these simulated results can still be valuable in broadly guid-
ing the drone towards the right direction, i.e., towards areas
where the SNR is relatively better. Once the drone arrives in
this area, it physically conducts measurements to fine-tune its
hovering location. Given a considerably smaller search space,
the operation incurs far less time. The drone now hovers at
this location offering connectivity to clients. If client positions
or traffic changes substantially, the drone recomputes the ray-
tracing results and finds a new hovering location.

Early prototype with 7 clients spread across an area of
160 x 280m in the UIUC campus shows promise. We con-
duct flights with an octocopter, carrying an Almond WiFi
AP and continuously transmitting packets to clients. The
octocopter moves in a raster-scan over an area of 50 x 68m,
and at three different heights at 15, 30, and 45m, above
ground level. We conduct ray tracing simulations using Rem-
com Wireless Insite [10]. We observe consistent correlation
between the ray-tracing model and measurements — DroneNet
exploits this to extend 44% throughput gain with only 10% of
full measurement overhead.

We briefly summarize the contributions as follows:

(1) Exploiting inaccurate ray tracing as an opportunity to re-
duce the search space for drone placement. Fine tuning the SNR
search through small scale physical movements of the drone.

(2) Measurement based evaluation on a real drone, flying on the
UIUC campus while communicating to 7 clients on the ground.
Significant engineering effort towards building this infrastruc-
ture, including payload optimization, battery management,
data rate selection, power control, ground truthing, etc.

The rest of the paper expands on these ideas and experimen-
tation effort. However, we first address some of the natural
questions and discuss other alternatives to solve the problem.

2. NATURAL QUESTIONS

Does today’s battery technology support longer flights? Fly-
ing a drone requires significant battery power. However, con-
stant hovering may be unnecessary. Drones may hover only
under extreme situations, while under less dire needs, they
may fly and park at charging stations on top of buildings,
lamp-posts, or fences. Gas/solar powered drones offering ex-
tended lifetime are also becoming available [11]. Alterna-
tive designs based on balloons consume relatively lesser en-
ergy [12]. We are aware of current battery limitations, how-
ever, we see opportunities emerging in the future that will
make extended drone flight viable.

How practical is obtaining terrain model? Public data from
Google warehouse is available for many buildings [13]. How-
ever, it is possible to create 3D models of an area by taking
pictures from drones and using photogrammetry techniques
[14]. We do not rely on material of the terrain.

How compelling are the gains? The gains are promising.
Figure 2 shows that 16-18dB of SNR gain is possible from
drone mobility at various heights (30m, 45m, and 60m). This
translates into a throughput gain of 44%.
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Figure 2: SNR gains for various heights across all clients

Are the gains emerging from moving closer to clients? Mov-
ing closer does not necessarily improve SNR due to multipath.
To elaborate more, suppose that drone mobility is constrained
in a region R. Let P.,s. denote a location within R that is
closest to a client. Now, let Pio denote a subset of locations
within R such that the SNR to the client from these locations
is ranked in the top 10 percentile. Figure 3 shows the sepa-
ration between P and various locations in P.;,s.. Evidently
many high SNR positions exist when the drone is 20-30 me-
ters far from P.jose. This suggests that the drone need not go
closer to achieve a near-optimal SNR.

Figure 4 shows the best SNR in R for different heights of the
drone at various client positions. SNR can both decrease or
increase with height depending upon terrain structure, client



location. SNR variation is non monotonous and going closer
to the client by decreasing the height is not always beneficial.
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Figure 3: High SNR positions are scattered everywhere
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Figure 4: Best observed SNR for different drone heights

Why not use Femtocells or WiFi Hotspots? While bene-
ficial, static infrastructure entails high density to simultane-
ously cover all shadows. Moreover, the height of deploy-
ment is limited to height of buildings. A drone on the other
hand can fly higher and offer much higher coverage. The
drone’s motion allows on-demand mitigation of dead zones
and hotspots.

3. SYSTEM DESIGN

Terrain SNR-location Refined SNR- Optimal
Model heatmap location heatmap Location

Ray Measurement/ Compute Service at
Tracing Simulation optimal optimal
Simulation fusion location location
Client

Locations/demand

clients/
mobility

Figure 5: Flow of operations in DroneNet

Figure. 5 summarizes the flow of operations in DroneNet.
Given a set of client locations and the terrain model, DroneNet
first runs a low fidelity, light weight ray tracing simulation
to compute SNR at each client as a function of drone loca-
tion. A 3D heatmap showing this SNR for each client is ob-
tained. The SNRs are translated into throughput using Shan-
non’s equation’. The sum throughput over all clients is com-
puted, resulting in a 3D heatmap of aggregate-throughput as
a function of drone location. DroneNet then conducts a quick

!We consider throughputs of only client-drone links (without
including the drone LTE backhaul) since they create bottle-
neck. The LTE backhaul is expected to have clear line of sight
to the basestation, therefore of high quality. However, client-
drone links are more challenging due to terrain shadowing.

scan of physical measurements around the regions of high
throughout in the heatmap. During the scan, the drone finds
the position offering maximum aggregate-throughput across
all clients and hovers there. Whenever the traffic demand of
clients changes, or clients move, DroneNet should adapt ac-
cordingly. However, we leave addressing client mobility to
future work. We now expand the two key modules enabling
DroneNet design: (1) Ray tracing simulation, and (2) Fusion
of simulation and measurements

3.1 Ray tracing simulations

Using ray tracing simulations, DroneNet predicts SNR
heatmap without undergoing the overhead of empirical
measurements. A basic “shoot and bounce” ray tracing [15]
simulation is conducted using Remcom Wireless Insite soft-
ware [10]. We describe the steps involved using Figure 6
as an illustration. It shows a few buildings, one client, and
an area where the drone can potentially fly. The goal is to
predict SNR from ray tracing.

. Many rays pointing in all directions are generated from the
client position. Figure 6 depicts rays emitting from Client-1

2. Each ray advances, and hits objects in the environment such

as buildings and trees.

3. This causes deflections—reflections and diffractions. While

each reflection creates one reflected ray, diffraction creates
multiple rays. The deflection of rays generated from Client
1 is observable in Figure 6.

4. Appropriate amplitude is set for deflected rays based on

propagation delay and the absorption, reflection and refrac-
tion coefficients of incident material. We assume a single
material for all structures, resulting in some inaccuracies.

5. Rays with weak signal strength are eliminated. This in-

cludes: (1) Rays undergoing more than 4 successive reflec-
tions. (2) Rays undergoing more than 3 successive diffrac-
tions. (3) Rays traveling longer than a certain threshold.

6. Finally, all rays arriving at the drone location are noted. The

SNR is computed as a function of amplitude and delay of
the arriving rays. Figure 6 shows the set of rays converging
at the drone location L1 using which the SNR at L1 can be
computed.

Similarly, SNR of all other possible client-drone links are com-
puted to obtain their own SNR heatmaps.

Figure 6: 3D SNR heatmap

Figure 7 shows the comparison between measured SNR and
ray tracing predicted SNR. While ray tracing simulations can
model the reality well (Figure 7(a)), it can also be less accu-
rate for some clients (Figure 7(b)).



The simulations can be offloaded to cloud. Real time re-
sults [16, 17] are achievable through parallelization and
tradeoffs with accuracy. In this paper, however, we conduct
simulations offline.
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Figure 7: (a) Ray tracing can capture variation in SNR
well. (b) Ray tracing can be inaccurate in some cases

3.2 Fusion of ray tracing and measurements

While ray-tracing predictions are promising, hovering a drone
entirely based on predictions gave poor performance. We de-
fine SNR gain of a candidate position for drone hovering as
the difference between the measured SNR of that position
and the median of measured SNRs of all candidate positions
(more details in Section 4). We take top 10%-ile high SNR
drone positions from ray-tracing predictions and plot a CDF
of their SNR gain in Figure 8. Evidently, the median is close
to 0 suggesting that ray-tracing alone is not enough. The low
accuracy arises from inexact terrain modeling, imprecise ma-
terial absorptions, unmodeled foliage and limited number of
rays/reflections/diffractions used to reduce complexity. Ora-
cle is an imaginary system which can magically predict mea-
surements to 100% accuracy. We observe in Figure 8 that
Oracle has a substantial SNR gain. DroneNet achieves 57%
of these gains by fusing ray-tracing predictions with sparse
measurements, as elaborated below.
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Figure 8: Ray tracing predictions fail to capture SNR gains

1. Perform ray tracing simulations to obtain sum-throughput
heatmap as outlined in Section 3.1

2. Select the top 10%sile drone locations in the sum-throughput
heatmap. Let this set of points be denoted as ht

3. Divide the entire region into chunks of size 25m?. Find the
chunk that contains the largest number of positions from ht.

4. Scan the chunk determined from the above step to conduct

physical throughput measurements. The position with max-
imum throughput in the chunk based on measurements is
selected for hovering.

After determining the optimal location, the drone needs to
relocate there. The relocation accuracy allows some tolerance
because there will be many spatially contiguous points with
similar throughput around the optimal position.

4. EVALUATION
4.1 Experimental Setup

Our experimental platform consists of an X8 quadcopter from
3D Robotics [18]. We placed an Almond WiFi AP [19], pow-
ered by a LiPo battery, on the quadcopter and set it to trans-
mit at a frequency of 2.437GH z, (20M H z bandwidth), with
a transmit power of 28dBm. Whereas we use WiFi for the
client-drone link, it can also be a cellular link with a femto-
cell (instead of the WiFi AP) operating in a designated LTE
band. An Android phone was additionally used to time-stamp
and location stamp the packets sent out by the Almond AP. 7
clients running linux on Raspberry Pis were spread in an area
(160 x 280m) around the Engineering Quad at the University
of Illinois, as shown in Figure 9(a).

The Raspberry Pis were connected to an Atheros WiFi don-
gle. The AP transmitted 400 packets per second, which were
captured by the clients from which SNR was computed. Dur-
ing the packet transmissions, the drone flew in a raster scan
at a speed of 1m/s covering the area (50 x 68m) highlighted
in Figure 9(a). Three different heights—30, 45 and 60 m—
were used for drone flights above this area. This provides us
a platform to measure the spatial heatmap of SNR variation.>

The 3D terrain model of most buildings around the Quad
were obtained from Google 3D Warehouse [13]. Some of
the unavailable models were manually created using Auto-
CAD softwares by borrowing relevant design diagrams from
the architecture department. The top and perspective view of
the buildings from Figure 9(a) is modeled in Figure 9 (b, c).
The model includes 3D terrain structures, client locations and
drone flight path. The 3D model was input to Remcom Wire-
less Insite [10], producing another spatial heatmap of SNR
variations used for predictions.

Let the Oracle be a system whose ray-tracing predictions
match exactly with measurements. We define Random as a
system where the drone randomly chooses a position to hover.
We define Ray Tracing as a system where the drone hovers
at the best location predicted by ray tracing simulations. We
characterize performance gains of systems — Ray Tracing,
DroneNet, and Oracle over Random. We use throughput as
the performance metric and translate SNR into throughput
using Shannon’s equation.

4.2 Performance Results

Single client throughput: Figure 10 quantifies the gain in
throughput. DroneNet gain varies from 1.2z to 4.2z over var-
ious clients. While RayTrace gains has a significant difference
from Oracle gains, DroneNet captures reasonable Oracle gains.
Multi client throughput: Figure 11 shows the pattern of gain
across multiple gains. While the gains decrease with higher
clients, we need not optimize for all clients simultaneously.

2Experiments were conducted as per FAA regulations. Opera-
tor was trained by a general aviation pilot and flight permis-
sions were obtained from campus police.
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Figure 10: DroneNet gains are comparable with the Oracle

Power law [20] indicates that 50% traffic demand comes from
1% of the users who from the bottleneck. Addressing the bot-
tleneck will benefit all other users.
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Figure 11: DroneNet provides up to 44% gains for 3 clients
and 36% for 5 clients

Gains with constrained motion: Figure 12 computes the
gains over various spatial constraints of drone motion. The
experimental area, A, is partitioned into 4, 6, and 8 regions
shown as A/4, A/6 and A/8 on the x-axis. Even with con-
strained motion, there is a graceful degradation in gains, sug-
gesting that enough diversity from shadowing exists. This
also suggests that even constrained mobility can offer gains.
Figure 13 zooms in to show the CDF of gains for A/6. On
an average, DroneNet achieves 57% of oracle gains with only
10% of measurement overhead.
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Figure 12: 25 ~ 45% gains, with constrained mobility
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5. RELATED WORK
5.1 Mobility

Beamforming: While Beamforming techniques [21] help ad-
dressing similar problems as DroneNet by steering the radia-
tion pattern based on demand, we believe combining beam-
forming with physical mobility can offer higher flexibility.
Mobile Infrastructure: DroneNet’s notion of mobile in-
frastructure is similar to Google Loon [22] and Facebook
drones [23]. DroneNet, however, attempts to increase spec-
trum efficiency and address dynamic demands even in high
density urban networks and not just in remote areas. DARPA
Landroids [24] use autonomous robots for offering com-
munication in challenging terrains for military. We believe
that ideas in DroneNet will be useful for Landroids. Cellular
towers are moved on vans [25] during sporting events. While
useful, it viable only during large gatherings. A very early
version of our work was presented as a Mobicom poster [26].
In indoor spaces, iMob [27,28] shows that Roomba robots
can enhance throughput by exploiting multipath opportuni-
ties. DroneNet operates outdoors and whereas iMob directly
uses empirical measurements for finding the optimal AP posi-
tion, for a large outdoor 3D search space, such measurements
become costly. DroneNet uses ray-tracing to reduce this cost.
A swarm of drones is used in [29] to demonstrate multi-
hop connectivity. In contrast, we focus on predicting optimal
placement of the drones utilizing ray-tracing techniques.

5.2 Spatial SNR Modeling

Path loss Models: Path loss models characterize RF atten-
uation as a power of propagation distance. The exponent
and variation properties are determined empirically and used
for predictions [30-32]. However, its accuracy is limited and
doesn’t capture sudden SNR changes at building boundaries.
Ray Tracing: Ray tracing has been studied extensively in
the context of cellular network planning. Works in [33, 34]
show that ray tracing models can predict the SNR in urban
and semi-urban areas. Works in [35,36] attempt to decrease
the complexity for Manhattan style urban areas by transform-
ing 3d ray tracing into 2d ray tracing. Similarly [37] pro-
poses an angular partitioning technique to decrease complex-
ity. DroneNet benefits from these techniques and, moreover,
incorporates selective measurements for refining the model.



6. DISCUSSION AND ON-GOING WORK

Client Mobility: We do not address mobile clients in this pa-
per. Plethora of research exists in vehicular networking com-
munity for exploiting the predictive nature of mobility [38].
We believe it would be an interesting approach to combine
ray tracing with mobility models to address the challenges.
DroneNet’s ray-tracing models can be generalized to a path
instead of a point, however, we leave this for future work.
OFDM/MIMO: SNR is not a good indicator of throughput for
multi-carrier OFDM systems. While direct throughput assess-
ment (with Iperf) was infeasible because of flying constraints,
it is possible to extend the ray-tracing simulations to OFDM
by observing the channel frequency response (CFR). Evalua-
tion can be conducted with platforms that export CFR [39].
Perhaps, more opportunities at the subcarrier/antenna level
from OFDM/MIMO can be used for optimizations. We treat
them as separate problems and leave them for future work.
Location Requirement: DroneNet’s ray-tracing module re-
quires client locations to be known with an accuracy of couple
of meters. Since we attempt to mitigate large shadows caused
by terrain profile, we do not need wavelength level accuracy.
GPS location sharing may have privacy concerns. We do not
address these concerns in this paper, our focus is to explore
the possibilities.

7. CONCLUSION

Demand for cellular traffic continues to increase while the
spectrum resources are limited. Cellular users also suffer from
intermittent regions of poor connectivity due to wireless shad-
ows and dead zones caused by buildings. We envision a sys-
tem of drones that can extend cell towers and mitigate the dy-
namic connectivity issues while also facilitating efficient use
of the scarce spectrum. Our system DroneNet explores a key
problem of determining optimal drone placements. While we
scratch the surface, much more remains to be done. Early
prototype with real flights offers sufficient promise for a long
term research engagement.
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