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Abstract—A growing number of mobile phone applications uti-
lize physical location to express the context of information. Most
of these location-based applications assume GPS capabilities.
Unfortunately, GPS incurs an unacceptable energy cost that can
reduce the phone’s battery life to less than nine hours. Alternate
localization technologies, based on WiFi or GSM, improve battery
life at the expense of localization accuracy. This paper quantifies
this important tradeoff that underlies a range of emerging
services. Driven by measurements from Nokia N95 phones,
we develop an energy-efficient localization framework called
EnLoc. The framework characterizes the optimal localization
accuracy for a given energy budget, and develops prediction-
based heuristics for real-time use. Evaluation on traces from real
users demonstrates the possibility of achieving good localization
accuracy for a realistic energy budget.

I. INTRODUCTION

Mobile phones are powerful platforms for sensing, sharing,
and querying people-centric information. A variety of
applications are on the rise, many of which utilize location
to express the context of information. Most of these location
based applications assume GPS capabilities. While GPS
offers good location accuracy of around 10m, it incurs a
serious energy cost that can drain a fully charged phone
battery in 8.5 hours [1]. We make a few observations in light
of this energy-accuracy profile.

(1) In real life, the phone battery must be shared with
voice calls, SMS, emails and pictures. The energy budget for
localization alone is a small fraction of the battery capacity.
If this fraction is assumed to be 25%, continuous GPS
localization is available for less than 2.5 hours.

(2) One may argue that continuous GPS is unnecessary,
and can be activated only on demand. While this may suffice
for some services (e.g. geo-tagging a photo), many emerging
applications rely on the feasibility of continuous localization
over reasonably long time scales. Examples include GeoLife
[2], Micro-Blog [1], TrafficSense [3] and Pothole Patrol [4].

(3) Continuous localization over long time scales results
in higher average error. For an energy budget of K GPS
readings and a duration of T > K time units, at (T −K) time
units location can only be estimated, and hence, it is more
erroneous than an actual GPS reading. When averaged over
all, actual and estimated readings, the average localization
error is higher than the GPS instantaneous error (∼10m).

(4) WiFi and GSM-based localizations are not obvious
replacements to GPS. While these schemes are less energy-
hungry, they incur higher (instantaneous) localization error

(around 40m and 400m respectively). This permits a greater
number of location readings, each of which is less accurate.
Whether this results in lower average error than few, but
accurate, GPS readings, is an open question.

This paper investigates the space of energy-efficient lo-
calization for mobile phones and expands on the following
contributions:

• Identify the space of energy-accuracy tradeoff. Measure-
ments on Nokia N95 phones quantify this tradeoff.

• Analysis of the optimal localization accuracy for a given
energy budget. For a given mobility trace, an offline
dynamic program (DP) computes the maximum location
accuracy achievable using GPS, WiFi, GSM and combi-
nations thereof. When results show that the theoretical
optimal may not suffice for high-accuracy applications,
we explore the usefulness of prediction.

• Exploit habitual activity of individuals and behavior of
populations to predict location. Predictions incorporated
into the DP offer offline optimal solutions. Online heuris-
tics permit energy-efficient localization in real time.

• Evaluate heuristics in real life situations. Performance is
compared with the theoretical optimum using a custom
trace-based simulator and mobility traces collected in
the UIUC campus. Results confirm the feasibility of
achieving good localization over a day’s energy budget.

II. ENERGY MEASUREMENTS

We used a software monitor to measure fine-grained power
consumption in Nokia N95 phones. This section reports the
accuracy and energy measurements that motivate EnLoc.

A. Localization Using WiFi and GSM

As an alternative to GPS hardware and its unavailability
indoors, project Place Lab [5] proposed using WiFi and GSM
sensors for localization. Specifically, authors create a wireless
map of a region by war-driving in the area. The wireless map
is composed of sampled GPS locations, WiFi access points
and GSM towers audible at these locations. This wireless map
is then distributed to phones. When a phone travels through
the mapped area, it estimates its own location by matching
its list of audible WiFi APs/GSM towers to the wireless map.
Place Lab experiments in downtown Seattle exhibit a median
positioning error of 13 to 40m with WiFi, and around 94 to
196m with GSM. When performed in Champaign, IL, and
Durham, NC, WiFi accuracy ranged between 25 to 40m, while
GSM ranged between 300 to 400m.



Fig. 1. Power consumption in mW for Nokia N95 phones, sampled at 30s intervals: (a) GPS measurement (b) WiFi measurement (c) GSM measurement.

B. Energy Measurements for GPS, WiFi, and GSM

We measured the energy consumption on Nokia N95
phones for each localization sensor. We charged the phone
battery to full capacity and turned on only the location sensor
we intended to measure. An energy monitoring program
probed the location sensor at a chosen interval Tprobe.

Figure 1(a) shows GPS power consumptions as a function of
time, for Tprobe = 30 seconds. We see periodic spikes on top of
a baseline energy consumption at approximately 400 mW. The
spikes correspond to a GPS sensor read operation and a write
operation into the phone’s file system for logging the location
data. The baseline corresponds to the power consumed by the
GPS receiver.

Similar measurements are reported in Figure 1(b) and (c)
for WiFi and GSM. Observe that while the baseline power
consumption for WiFi is low (55 mW), it exhibits a high spike
(of around 1100) for every probe. GSM based samples exhibit
similar characteristics, however, their power consumption is
less. When power consumption is translated to net battery life,
we found that GPS allowed for 9 hours, while WiFi and GSM
sustained for 40 and 60 hours, respectively. Viewed against
corresponding localization accuracies of 10m, 40m, and 400m,
the energy-accuracy tradeoff is evident.

III. ENLOC: FRAMEWORK DESIGN

A. Average Location Error

The energy-efficient localization problem can be defined
as follows. Given an energy budget B and time duration T ,
design a strategy that will minimize the average localization
error (ALE). Formally, denote Lreported(ti) and Lactual(ti)
to be the reported and actual locations of the phone at time
ti. Assuming T discrete time-points, the ALE is:

δavg =
T∑

i=1

(Lreported(ti) − Lactual(ti)
T

)

Assuming GPS to be the ground truth, a GPS reading at time
tj implies that Lreported(tj) is same as Lactual(tj). Similarly,
a WiFi reading at tj implies that Lreported(tj)−Lactual(tj) is
in the order of 40m. The problem then is to minimize δavg for
a given energy budget. We model this energy-accuracy tradeoff
as an optimization problem.

B. Problem Formulation

Our goal is to determine a schedule with which the lo-
cation sensors should be triggered such that the average
localization error (ALE) is minimized for a given energy
budget. The schedule is a set of time instants, {t1, t2, t3, ..}
and the corresponding sensors {s1, s2, s3, ..}, where si ∈
[GPS,WiFi,GSM ]. The optimal schedule should trigger a
reading of sensor si at time ti to minimize ALE.

We developed a dynamic programming (DP) solution to the
problem above. The DP takes as input an entire user trace
(i.e., GPS, WiFi and GSM readings at all time-points along
the user’s path) and outputs a sensor reading schedule that
achieves the minimum ALE. In the interest of space we omit
the details of the dynamic program and only present our main
findings.

C. Optimal Localization Error

To obtain the best localization accuracy, we executed the
DP on mobility traces collected on the UIUC campus. We
war-drove the campus [5] and generated a wireless map of
the area. Then, we distributed phones to students to gather
mobility traces. A custom simulator integrated the traces with
the wireless map, and executed the dynamic program. We
specified an energy budget of 25% of the phone battery and
the duration of operation was 24 hours. For intermediary time
points, at which sensor readings are not performed, we report
“the last known location”. We assumed that sensors can be
sampled every 30 seconds.

OptGPS OptWiFi OptGSM OptComb
Trace 1 164.999 78.52 352.909 78.52
Trace 2 105.35 75.16 327.116 58.66
Trace 3 125.848 62.134 370.621 62.134

TABLE I
OPTIMAL PERFORMANCE FOR DIFFERENT TRACES

We evaluate four optimal schemes, namely, Optimal
GPS/WiFi/GSM/Combined. As the name suggests, Optimal
GPS corresponds to the minimum ALE achieved when only
GPS readings are used. Table I reports results from three
mobility traces. Observe that Opt WiFi outperforms Opt GPS
indicating that greater number of less accurate readings is
better for localization. Also, Opt Combined outperforms the
others, and is close to Opt WiFi in many of the traces.
However, it is surprising that the offline optimal error (with



knowledge of the entire trace) was typically more than 60m.
Online versions of these schemes (that do not have the entire
trace) will naturally perform worse. Reporting the last known
location between consecutive location readings is a source of
this inefficiency; we address this through mobility prediction.

D. Prediction Opportunity

In reality, human behavior/mobility is amenable to
prediction [6], [7], [8]. Driving on straight highways, turns
on one way streets, habitual office hours, are examples of
prediction opportunities. EnLoc attempts to exploit them.

Simple Linear Predictor: We begin by considering a basic
linear predictor. The location of a phone at time tk, denoted
L(tk), can be a linear extrapolation of the two previously
sampled locations, L(ti) and L(tj). This can be effective
when a phone moves on a straight road. However, if the
phone’s movement is not straight, or if L(ti) and L(tj) were
highly erroneous, linear prediction may be unsuitable. We
have modified the DP to incorporate linear prediction (LP)
and compute the minimum average error values.

Human Mobility Patterns: While linear prediction is a
general approach, recognizing individual human behavior may
facilitate better predictions. The intuition is that humans have
habitual activity patterns, and sampling the activity at a few
uncertainty points may be sufficient for predicting the rest. For
instance, given that a person goes to lunch at either 12:00pm,
12:50pm, or 1:00pm, the phone may trigger GPS readings
just after these times. Learning that the person has started
out for lunch, her subsequent locations can be predicted (i.e.,
locations along the habitual path from office to the cafe).
Similarly, GPS readings between 12:30am to 7:00am can
be obviated if the person habitually sleeps in this time window.

Deviations: To cope with deviations from habitual paths,
we hypothesize that statistical behavior of large populations
provide useful hints. Knowing that most of the vehicles take a
left turn at a traffic intersection can be valuable for prediction.
In general, if a “probability map” can be generated for a given
area, an individual’s mobility in that area can be predicted. We
extended our DP to incorporate probability maps and extract
the optimal localization schedule for a given trace. Intuitively,
the DP is expected to schedule location readings at points
where the individual’s behavior differs from the population’s
statistical behavior.

IV. ENLOC: SYSTEM DESIGN

This section attempts to translate the above ideas into a
working system, called EnLoc. The system exploits both
habitual mobility patterns and population-driven probability
maps. EnLoc is an online solution, and unlike the DP, does
not assume knowledge of the user’s entire trace.

Exploiting Habitual Mobility
A study with 100, 000 people has shown that individuals
exhibit habitual space-time movements, with reasonably small

variation [6]. To visualize this, we collected GPS-based mo-
bility traces of several people and plotted them over Google
Maps. Figure 2(a) shows a simplified example.

One may envision the Google maps plot as a tree, with
branches at certain points – we call this the logical mobility
tree (LMT). The vertices of this tree are the branching points
on the person’s actual mobility paths. Uncertainty arises at
these branching points (e.g., at a traffic intersection where a
person may go straight or turn right), and hence, the vertices
of the LMT are also called uncertainty points. The edges of
the LMT represent physical paths that connect consecutive
uncertainty points. Each edge is associated with (1) the starting
time of that physical movement, (2) the average velocity on
that path, and (3) the duration of travel on that physical path.
Figure 2(b) shows the LMT corresponding to the physical
mobility in Figure 2(a).

Our key idea is to schedule location readings right after
the uncertainty points on the LMT. Such a location reading
will resolve the uncertainty since the phone will be placed
in one of the paths emanating from that uncertainty point.
Thus, the phone’s location can be reasonably predicted until it
encounters the next uncertainty point, at which time, another
location reading will be necessary.

Observe that the LMT in Figure 2(b) is a spatial
representation of a person’s mobility profile. In reality, a
person traverses the same edge on the LMT at many different
times. Each of these possibilities translates into a distinct
edge in the LMT. Figure 2(c) shows a hand-constructed
example of such a space-time LMT representation. To
accurately know when the phone leaves a particular node of
the LMT, EnLoc will need to sample all the edges emanating
from that node. However, energy-budget limitations will
allow only a fraction of the emanating edges to be sampled.
EnLoc designs a heuristic to sample a subset of the edges
branching out of a node. We explain this with the example of
Figure 2(c) which is not derived from an actual mobility trace.

Assume that current time is 8:00am, and the phone
is located at home, H . Also assume that the remaining
energy budget is Bremaining . The heuristic begins by
identifying all the paths from H to the leaves of the tree,
i.e., P1 = home ⇒ coffee, and P2 = home ⇒ walmart.
Then, the number of location readings Ni, necessary to track
the phone with certainty, is computed for each path Pi. Thus
N1 = 4 + 6 = 10 readings. Observe that 4 readings are
necessary to track the phone leaving Home, and 6 readings for
going from Office to Coffee. These 6 readings include the 5
edges from Office to Coffee (the latest being 6:10pm), as well
as the 6:00pm edge from Office to Gym. If the 6:00pm edge
is not included, EnLoc may not know if the phone has started
moving towards the Gym. Similarly, N2 = 4 + 8 + 3 = 15
readings. Now, the heuristic computes M = max(Ni), a
pessimistic estimate of the number of readings necessary in
the future; M = 15 for this example. Then, the heuristic
computes F = eH

M , where eH is the number of emanating
edges from Home. In this example, F = 4

15 . The phone is
allocated F × Bremaining amount of energy for detecting
its departure from home. Assuming Bremaining is 10, there



  

Fig. 2. Personal mobility profile: (a) An anonymous user’s movement over two weeks (b) A spatial logical mobility tree (LMT) (c) A spatio-temporal LMT.

are approximately 2 GPS readings available. The heuristic
randomly chooses 2 time-points out of the 4, and samples
the phone’s location. Once that phone is found to be on one
of the paths going out of Home, the heuristic predicts the
phone’s location based on the habitual velocity on that edge.
At the next uncertainty point, the phone recomputes F using
the scheme above.

Addressing Deviation from Habits
Users may deviate from their habitual paths. Even though de-
viations are not the common case, they are important because
several applications may be triggered due to deviation. Micro-
blogging [1] may be more active when people go for vacations;
location-specific information may be necessary when people
are driving down unfamiliar paths. To addresses the case of
deviation, EnLoc exploits mobility of large populations as
a potential indicator of the individual’s mobility. The basic
idea is as follows: consider a person approaching a traffic
intersection from Street A. Since the person has not visited
this street in the past, it is difficult to predict how she will
behave at the imminent intersection. Now, if a large fraction of
the population is known to take a left turn onto Street B, then
the person’s movement can be guessed accordingly. EnLoc
develops mobility maps of large populations and exploits them
for prediction.

EnLoc detects a deviation when a scheduled location read-
ing discovers the phone in an unexpected location (i.e., not
on the LMT). At this time, EnLoc switches to the Deviation
Mode of operation. In this mode, the residual energy budget
is divided into equally time-spaced WiFi readings across the
remainder of the day. Now, once the first location sample
has been obtained, EnLoc uses the population activity map
to predict the phone’s movement. The velocity and turns at
different intersections are estimated from the activity map.
Incorrect predictions obviously incur location error. The error
accumulates until the next reading, when EnLoc makes a new
prediction using the new location as the starting point.

Without loss of generalization, let us consider 4-way traffic
intersections. EnLoc computes 4 probabilities for each inter-
section, i.e., an user entering the intersection from Street A,
either turns left, turns right, continues straight, or takes a U-
turn. One may envision this as a 4× 4 matrix, where element
ij denotes the probability that the user entering street i exits
through street j.

We generated the probability maps for UIUC campus using

Google maps. First, we identified all roads that border the
campus. Further, we identified roads that intersect the border-
ing roads, and enter the campus. We call these feeder roads.
We also identified all parking lots within the campus and
their capacities. Now, we simulated vehicles that enter the
campus through a feeder road, and drive to a pre-specified
parking lot. The pre-specified parking lot is randomly chosen
from the distribution of parking lot sizes. For each vehicle,
we obtained its driving direction through Google Map APIs,
and parsed it to extract the vehicle’s movement through each
traffic intersection (i.e., left/right/straight/U-turn). Simulation
of thousands of vehicles produces the probability matrix for
each intersection. A phone that is installed with this matrix
should be able to predict/localize itself in the UIUC campus.

V. PERFORMANCE EVALUATION

We evaluate EnLoc using traces collected on UIUC
campus. The energy budget was set to 25% of the battery
capacity and the duration of operation was 24 hours. An
ideal evaluation of EnLoc should characterize the average
localization error (ALE) over a person’s complete mobility
pattern (i.e., habitual and deviant paths). However, we
found that the actual deviations extended far beyond the
war-driven/probability-mapped UIUC campus. Therefore, we
evaluated population-based prediction using portions of traces
that were within the campus. Then, we evaluated the habitual
mobility profile-based prediction by pruning the deviations
from a user’s LMT. We believe that the localization error will
be close to the average of these two cases.

Deviant Paths
At each traffic intersection, the mobility of the phone was
predicted based on the maximum probability at the intersec-
tion. The error was computed whenever the prediction was
inconsistent with the actual user’s movement. Section III-C
and Table II describe the schemes examined in this section.

Opt-LP-GPS/WiFi/GSM Optimal GPS/WiFi/GSM + Lin. Pred (LP)
Opt-LP-Comb Optimal+Combined GPS,WiFi,GSM + LP
OptMap Optimal using map predictor
Heu-Eq-GPS/WiFi/GSM Heuristic+Equally-spaced GPS/WiFi/GSM+LP
EnLoc-Eq-Map Heuristic+Equally-spaced GPS on Map

TABLE II
OPTIMAL AND HEURISTIC SCHEMES

Figure 3(a) reports the optimal localization error averaged
over all mobility traces. Figure 3(b) present the performance



Fig. 3. ALE (a) Deviant Path Optimal Schemes, (b) Deviant Path Heuristics, (c) Individual Mobility Profile.

of online heuristics. We make the following observations.
As mentioned earlier, OptWiFi consistently outperforms

OptGPS. This trend holds for linear prediction as well. We
conclude that, if scheduled carefully, WiFi offers better energy-
efficient localization than GPS/GSM.

Linear prediction performs well even for mobility traces
that take frequent turns. We examined the optimal schedule
for “staircase like” movements. When the distances between
consecutive turns were short, the linear predictor approximated
the movement with a straight line cutting diagonally through
the staircase. If the trace has long stretches of straight lines,
the Opt-LP schemes naturally predict well, scheduling 2
consecutive readings at the beginning of each straight line.

When using probability maps, the optimal ALE is small.
This is because the number of mis-predictions (at the intersec-
tions) are typically fewer than the number of location readings
permitted by the budget. As a result, Opt-Map schedules
a location reading wherever there is a mis-prediction. We
assumed that the velocity of the phone can be perfectly
predicted, and hence, errors arise only after mis-predictions.

Consistent with our earlier observation, Heu-Eq-WiFi
outperforms both Heu-Eq-GPS and Heu-Eq-GSM. However,
note that EnLoc-Eq-Map outperforms Heu-Eq-WiFi,
indicating that heuristics based on probability maps are
effective for achieving energy-efficient localization.

Habitual Mobility
We present the localization error when a person’s mobility
profile is utilized for prediction. We use an anonymous stu-
dent’s mobility profile derived from 30 days of traces. We
processed her mobility traces and manually generated the
logical mobility tree (LMT). For each day, we executed the
Mobility Profile Heuristic. Figure 3(c) shows that for the
allocated energy budget of 25% for 24-hours the average
localization error averages around 12m.

VI. LIMITATIONS AND FUTURE WORK

We discuss the key limitations of our current approach:
We assumed that while moving along a predicted path, the

location of the phone is accurately tracked. In reality, varying
speeds or pauses cause this prediction to be imprecise. Our
evaluation results do not account for these errors. Nonethe-
less, with accelerometers available on modern phones, speed
variations may be estimated and used for accurate prediction
[9]. Moreover, compasses may be able to dynamically sense

the movement/orientation of a person, and obviate EnLoc-
specified GPS readings. For instance, a GPS reading scheduled
after an intersection can be eliminated if the compass provides
the orientation of the user, indicating that the user took a
left turn. Since compasses/accelerometers can be less energy-
hungry, they may present opportunities for dynamic, adaptive
localization (as opposed to the static schedule in EnLoc).

EnLoc does not proactively identify deviations from habit-
ual paths. Techniques are necessary to quickly detect depar-
tures without investing excessive energy. Phone sensors may
again be effective here. If the phone behaves differently from
its habitual behavior at that time, EnLoc may suspect deviation
and schedule a sensor reading. We are investigating these
possibilities in our ongoing work.

Probability maps may be harder to generate for places
unlike university campuses (a town or city). Location updates
gathered over time from many mobile phones and statistics
from transportation departments may be useful.

Lastly, the mobility profile used in EnLoc are those of
graduate students, and may be less diverse (more predictable)
than that of a traveling salesman. Thus, the reported errors may
be optimistic. However, we believe that the algorithms/results
presented in this paper validate the intuition that individual
mobility profiling and large population statistics are an effec-
tive tool for energy-efficient localization.
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