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ABSTRACT
Crowdsourced video often provides engaging and diverse
perspectives not captured by professional videographers.
Broad appeal of user-uploaded video has been widely
confirmed: freely distributed on YouTube, by subscription on
Vimeo, and to peers on Facebook/Google+. Unfortunately,
user-generated multimedia can be difficult to organize; these
services depend on manual “tagging” or machine-mineable
viewer comments. While manual indexing can be effective
for popular, well-established videos, newer content may be
poorly searchable; live video need not apply. We envisage
video-sharing services for live user video streams, indexed
automatically and in realtime, especially by shared content.
We propose FOCUS, for Hadoop-on-cloud video-analytics.
FOCUS uniquely leverages visual, 3D model reconstruction
and multimodal sensing to decipher and continuously
track a video’s line-of-sight. Through spatial reasoning on
the relative geometry of multiple video streams, FOCUS
recognizes shared content even when viewed from diverse
angles and distances. In a 70-volunteer user study, FOCUS’
clustering correctness is roughly comparable to humans.
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1. INTRODUCTION
With the ubiquity of modern smartphones, photo and video
journalism is no longer limited to professionals. By virtue
of having a Internet-connected videocamera always at arms’
reach, the average person is always ready to capture and
share exciting or unexpected events. With the advent of
Google Glass, the effort required to record and share will
soon disappear altogether. The popularity of YouTube and
video sharing on social media (e.g., Facebook and Google+)
is evidence enough that many already enjoy creating and
distributing their own video content, and that such video
content is valued by peers. Indeed, major news organizations
have also embraced so-called “citizen journalism,” such as
CNN iReport, mixing amateur-sourced content with that of
professionals, and TV broadcasting this content worldwide.

Amateur video need not be immediately newsworthy to be
popular or valuable. Consider a sporting event in a crowded
stadium. Often, spectators will film on their smartphones,
later posting these videos to YouTube, Facebook, etc. Even
if their content is generally mundane, these videos capture
the unique perspective of the observer, and views potentially
missed by professional videographers, even if present. Unfor-
tunately, given a multitude of sources, such video content is
difficult to browse and search. Despite the attempts of sev-
eral innovative startups, the value can be lost due to a “nee-
dle in a haystack” effect [3–6]. To organize, websites like
YouTube rely on an haphazard index of user-provided tags
and comments. While useful, tags and comments require
manual effort, may not be descriptive enough, are subject to
human error, and may not be provided in realtime — thus,
not amenable to live video streams. In contrast, we envis-
age a realtime system to extract content-specific metadata for
live video. Unlike related work applying lightweight sensing
in isolation [1], our approach blends sensing with computer
vision. This metadata is sufficiently precise to immediately
identify and form “clusters” of synchronized streams with re-
lated content, especially, a precise subject in shared “focus.”

In this paper, we propose FOCUS, a system for realtime anal-
ysis and clustering of user-uploaded video streams, especially
when captured in nearby physical locations (e.g., in the same
stadium, plaza, shopping mall, or theater). Importantly, FO-
CUS is able to deduce content similarity even when videos are
taken from dramatically different perspectives. For example,
two spectators in a soccer stadium may film a goal from the



East and West stands, respectively. With up to 180 degrees
of angular separation in their views, each spectator may cap-
ture a distinct (uncorrelated) background. Even the shared
foreground subject, the goalkeeper, will appear substantially
different when observed over her left or right shoulder. With-
out a human understanding of the game, it would be diffi-
cult to correlate the East and West views of the goalkeeper,
while distinguishing from other players on the field. Novelly,
FOCUS’ analysis reasons about the relative camera location
and orientation of two or more video streams. The geomet-
ric intersection of line-of-sight from multiple camera views is
indicative of shared content. Thus, FOCUS is able to infer log-
ical content similarity even when video streams contain little
or no visual similarity.

Users record and upload video using our Android app,
which pairs the video content with precise GPS-derived
timestamps and contextual data from sensors, including GPS,
compass, accelerometer, and gyroscope. Each video stream
arrives at a scalable service, designed for deployment on
an infrastructure-as-a-service cloud, where a Hadoop-based
pipeline performs a multi-sensory analysis. This analysis
blends smartphone sensory inputs along with structure from
motion, a state-of-the-art technique from computer vision.
For each stream, FOCUS develops a model of the user’s
line-of-sight across time, understanding the geometry of the
camera’s view — position and orientation, or pose. Across
multiple user streams, FOCUS considers video pairs, frame
by frame. For each pair, for each frame, FOCUS determines
commonality in their respective lines-of-sight, and assigns
a “similarity” score. Across multiple feeds, across multiple
frames, these scores feed a pairwise spatiotemporal matrix
of content similarity. FOCUS applies a form of clustering on
this matrix, invoking ideas from community identification in
complex networks, returning groups with a shared subject.

FOCUS remains an active research project, as we endeavor to
further harden its accuracy and responsiveness. However, de-
spite ample room for further research, we believe that FOCUS
today makes the following substantial contributions:

1. Novel Line-of-Sight Video Content Analysis: FOCUS
uses models derived from multi-view stereo reconstruc-
tion to reason about the relative position and orientation
of two or more videos, inferring shared content, and pro-
viding robustness against visual differences caused by
distance or large angular separations between views.

2. Inertial Sensing for Realtime Tracking: Despite an
optimized Hadoop-on-cloud architecture, the computa-
tional latency of visual analysis remains substantial. FO-
CUS uses lightweight techniques based on smartphone
sensors, as a form of dead reckoning, to provide contin-
uous realtime video tracking at sub-second timescales.

3. Clustering Efficacy Comparable to Humans: In a 70-
volunteer study, clustering by modularity maximization
on a “spatiotemporal” matrix of content similarity yields
a grouping correctness comparable to humans, when mea-
sured against the ground truth of videographer intent.

2. INTUITION
User-generated, crowdsourced, multimedia has clear value.
YouTube and other sharing sites are immensely popular, as

is community-sourced video on Facebook and Google+. The
value of particular shared content, however, can be lost in
volume, due to the difficulty of indexing multimedia. Today,
user-generated “tags” or mineable text comments aid peers
while browsing rich content. Unfortunately, newer and
real-time content cannot benefit from this metadata.

We envisage large-scale sharing of live user video from smart-
phones. Various factors are enabling: the pervasiveness of
smartphones and increasing use of social apps; improving cel-
lular data speeds (e.g., 4G LTE); ubiquity of Wi-Fi deploy-
ments; increased availability and adoption of scalable, cloud-
based computation, useful for low-cost video processing and
distribution; enhanced battery capacity, computational capa-
bilities, sensing, and video quality of smartphones; and the
advent of wearable, wirelessly-linked videocameras for smart-
phones, such as in Google Glass.

The dissemination of live, mobile, crowdsourced multimedia
is relevant in a variety of scenarios (e.g., sports). However,
to extract this value, its presentation must not be haphazard.
It must be reasonably straightforward to find live streams of
interest, even at scales of hundreds or thousands of simultane-
ous video streams. In this paper, we propose FOCUS, a system
to enable an organized presentation, especially designed for
live user-uploaded video. FOCUS automatically extracts con-
textual metadata, especially relating to the line-of-sight and
subject in “focus,” captured by a video feed. While this meta-
data can be used in various ways, our primary interest is to
classify or cluster streams according to similarity, a notion of
shared content. In this section, we will consider what it means
for a pair of video streams to be judged as “similar,” consider
approaches and metrics for quantifying this understanding of
similarity, and identify challenges and opportunities for ex-
tracting metric data on commodity smartphones.

2.1 Characterizing Video Content Similarity
While there can be several understandings of “video similar-
ity,” we will consider two videos streams to be more similar
if, over a given period of time, a synchronized comparison of
their constituent frames demonstrates greater “subject simi-
larity.” We judge two frames (images) to be similar depend-
ing on how exactly each captures the same physical object.
Specifically, that object must be the subject, the focal intent of
the videographer. By this definition, subject-similar clusters
of live video streams can have several applications, depend-
ing on the domain. In sporting events, multiple videos from
the same cluster could be used to capture disparate views of a
contentious referee call, allowing viewers to choose the most
amenable angle of view — enabling a crowdsourced “instant
replay.” For physical security, multiple views of the same sub-
ject can aid tracking of a suspicious person or lost child. For
journalism, multiple views can be compared, vetting the in-
tegrity of an “iReport.”

It is important to note that this definition of similarity says
nothing of the perspective of the video (i.e., the location from
where the video is captured), so long as the foreground sub-
ject is the same. We believe our definition of similarity, where
the angle of view is not considered significant, is especially
relevant in cases of a human subject. Naturally, two videos
of a particular athlete share “similar” content, regardless of
from which grandstand she is filmed. However, if these videos



Figure 1: Time-synchronized frames from four videos of
an athlete on a stadium running track. Note that these
frames are considered “similar,” capturing the same ath-
lete, but “look” heterogeneous.

are captured from a wide angular separation, they may “look”
quite distinct. Contingent on the angle of separation, the vi-
sual structure and color of an object or person, lighting con-
ditions (especially due to the position of the sun early or late
in the day), as well as the background, may vary considerably.
Perhaps counterintuitively, two “similar” views might actually
look quite different (Figure 1). Our techniques must accom-
modate this diversity of view. Using the techniques we de-
scribe in Section 3, it would also be possible to judge a pair
of videos shot from a more-nearby location as more similar.
However, we see fewer immediate applications of this defini-
tion, and henceforth exclude it.

By our definition, videos which look heterogeneous may be
judged similar, if they share the same subject. Further, videos
which look homogenous may be judged dissimilar, if their sub-
jects are physically different. For example, videos that capture
different buildings, but look homogenous due to repetitive ar-
chitectural style, should not be considered similar. Thus, a
system to judge similarity must demonstrate a high certainty
in deciding whether the object in a video’s focus is truly the
same precise subject in some other video.

Visual Metrics for Content Similarity. Understanding
that two videos that “look” quite different might be judged
“similar,” and vice versa, several otherwise-reasonable tech-
niques from vision are rendered less useful. Histograms of
color content, spatiograms [10], and feature matching [33],
are valuable for tracking an object across frames of a video
though a “superficial” visual similarity. However, they are
not intended to find similarity when comparing images
that, fundamentally, may share little in common, visually.
Though complementary to our approach, visual comparison
is insufficient for our notion of subject-based similarity.

Leveraging Line-of-Sight. Our definition of similarity re-
quires a precise identification of a shared subject (difficult).
One possible proxy is to recognize that a pair of videos cap-
ture some subject at the same physical location. If we know that
a pair of videos are looking towards the same location, at the
same time, this strongly indicates that they are observing the
same content. Precisely, we can consider the line-of-sight of
a video, geometrically, a vector from the camera to the sub-
ject. More practically, we can consider the collinear infinite
ray from the same point-of-origin and in the same direction.
The geometric relationship of a pair of these rays reflects the

Field-of-View

Line-of-Sight

 F
ie

ld
-o

f-
V

ie
w

Figure 2: Illustrating line-of-sight: (a) users film two soc-
cer players, ideally defining two clusters, one for each; (b)
line-of-sight can be better understood as a 3D pyramid-
shaped region, capturing the camera’s horizontal and ver-
tical field-of-view angles.

similarity of the corresponding videos, at the corresponding
precise instant in time. A maximally-similar pair of views will
have line-of-sight rays that perfectly intersect in 3D — the
intersection point will be within the volume of their mutual
subject (e.g., person or building). Line-of-sight rays which do
not nearly intersect will not be similar. Figure 2 illustrates
that, with multiple videos, intersecting line-of-sight rays sug-
gest shared video content. Consistency across time reinforces
the indication.

Strictly, and as illustrated by the left athlete in Figure 2(a), in-
tersecting line-of-sight rays does not guarantee a shared sub-
ject. The principle subject of each video may appear in the
foreground of (or behind) the intersection point. Thus, an
inference of similarity by line-of-sight must be applied judi-
ciously. In Section 3, we explain how FOCUS’s similarity met-
ric leverages vision to roughly estimate the termination point
of a line-of-sight vector, substantially reducing the potential
for false positive similarity judgments.

Our system, FOCUS, leverages multi-view stereo reconstruc-
tions and gyroscope-based dead-reckoning to construct 3D ge-
ometric equations for videos’ lines-of-sight, in a shared co-
ordinate system. More precisely, we will define four planes
per video frame to bound an infinite, pyramid-shaped vol-
ume of space, illustrated in Figure 2(b). The angular sepa-
ration between these planes corresponds to the camera’s field-
of-view, horizontally and vertically, and is distributed symmet-
rically across the line-of-sight ray. Geometric and computer
vision calculations, considering how thoroughly and consis-
tently these pyramid-shaped volumes intersect the same phys-
ical space, will form the basis for a content similarity metric.

To simplify, FOCUS understands the geometric properties of
the content observed in a video frame, according to line-of-
sight and field-of-view. FOCUS compares the geometric rela-
tionship between the content one video observes with that of
others. If a pair of videos have a strong geometric overlap, in-
dicating that they both capture the same subject, their content
is judged to be “similar.” Ultimately, groups of videos, shar-
ing a common content, will be placed in self-similar groups,
called clusters. Clusters are found through a technique called
weighted modularity maximization, borrowed from community
identification in complex networks. FOCUS finds “communi-
ties” of similar videos, derived from their geometric, or “spa-
tial” relationship with time. Thus, uniquely, we say FOCUS
groups live user videos streams based on a spatiotemporal
metric of content similarity.

2.2 Opportunities to Estimate Line-of-Sight
With the availability of sensors on a modern smartphone, it
may seem straightforward to estimate a video’s line-of-sight:



GPS gives the initial position; compass provides orientation.
Unfortunately, limited sensor quality and disruption from the
environment (e.g., difficulty obtaining a high-precision GPS
lock due to rain or cloud cover, presence of ferromagnetic
material for compass) may make line-of-sight inferences
too error-prone and unsuitable for video similarity analysis.
Figure 3 illustrates this imprecision; lines of the same color
should converge. Further, GPS is only useful outdoors —
applications in indoor sporting arenas, shopping malls, and
auditoriums would be excluded. Of course, a sensing-only
approach can be valuable in some scenarios: outdoors when
a reduced precision is tolerable. In Section 3.5, we use
GPS, compass, and gyroscope for a lightweight clustering,
formulated to minimize the impact of compass imprecision.

Smartphone sensing is, in general, insufficient for estimating
a video’s line-of-sight. The content of video itself, however,
presents unique opportunities to extract detailed line-of-sight
context. Using the well-understood geometry of multiple views
from computer vision, it is possible to estimate the perspec-
tive from which an image has been captured. In principle,
if some known reference content in the image is found, it is
possible to compare the reference to how it appears in the
image, deducing the perspective at which the reference has
been observed. At the most basic level, how large or small
the reference appears is suggestive of from how far away it
has been captured. In the next section, we describe how our
solution leverages structure from motion, a technique enabling
analysis and inference of visual perspective, to reconstruct the
geometry of a video line-of-sight.

Both smartphone sensing and computer vision provide
complimentary and orthogonal approaches for estimating
video line-of-sight. This paper seeks to blend the best aspects
of both, providing high accuracy and indoor operation (by
leveraging computer vision), taking practical efforts to reduce
computational burden (exploiting gyroscope), and providing
failover when video-based analysis is undesirable (using
GPS/compass/gyroscope). We actualize our design next,
incorporating this hybrid of vision/multimodal sensing.

3. ARCHITECTURE AND DESIGN
Fundamentally, an accurate analysis of content similarity
across video streams must consider the video content itself
— it most directly captures the intent of the videographer.
Accordingly, reflecting the importance of visual inputs, we

Figure 3: Google Earth view of a stadium with impre-
cise line-of-sight estimates from GPS/compass: (green)
towards West Stands, left; (red) towards Scoreboard, top;
(blue) towards East Stands, right.

name our system FOCUS (Fast Optical Clustering of User
Streams). FOCUS leverages those visual inputs to precisely
estimate a video stream’s line-of-sight. Geometric and sen-
sory metadata provides context to inform a spatiotemporal
clustering, derived from community identification, to find
groups of subject-similar videos. The FOCUS design, while
willing to exercise substantial computation, is considered
with a view towards real-world deployability, emphasizing
(1) scalability, leveraging a cloud-based elastic architecture,
and (2) computational shortcuts, blending computer vision
with inertial sensing inputs into a hybrid analysis pipeline.

Architectural Overview
The FOCUS architecture includes: (1) a mobile app (proto-
typed for Android) and (2) a distributed service, deployed
on an infrastructure-as-a-service cloud using Hadoop. The
app lets users record and upload live video streams annotated
with time-synchronized sensor data, from GPS, compass, ac-
celerometer, and gyroscope. The cloud service receives many
annotated streams, analyzing each, leveraging computer vi-
sion and sensing to continuously model and track the video’s
line-of-sight. Across multiple streams, FOCUS reasons about
relative line-of-sight/field-of-view, assigns pairwise similarity
scores to inform clustering, and ultimately identifies groups of
video streams with a common subject.

Figure 4 illustrates the overall flow of operations in the FO-
CUS architecture. We describe the key components in this
section. We (1) describe computer vision and inertial sens-
ing techniques for extracting an image’s line-of-sight context;
(2) consider metrics on that context for assigning a similar-
ity score for a single pair of images; (3) present a clustering-
based technique to operate on a two-dimensional matrix of
similarity scores, incorporating spatial and temporal similar-
ity, to identify self-similar groups of videos; (4) explain how
computations on the Hadoop-on-cloud FOCUS prototype have
been optimized for realtime operation; and (5) describe a
lightweight, reduced accuracy sensing-only technique for line-
of-sight estimation, for use in cases when computer vision
analysis is undesirable or impractical.

3.1 Line-of-Sight from Vision and Gyroscope
By leveraging an advanced technique from computer vision,
Structure from Motion (SfM), it is possible to reconstruct a 3D
representation, or model, of a physical space. The model con-
sists of many points, a point cloud, in 3D Euclidean space. It
is possible to align an image (or video frame) to this model
and deduce the image’s camera pose, the point-of-origin lo-
cation and angular orientation of line-of-sight, relative to the
model. Multiple alignments to the same model infer line-of-
sight rays in a single coordinate space, enabling an analysis
of their relative geometry. As noted in Figure 4, FOCUS lever-
ages Bundler [37], an open source software package for SfM,
both for the initial model construction and later video frame-
to-model alignment.

While the SfM technique is complex (though powerful and
accurate), its usage is straightforward. Simply, one must take
several photographs of a physical space (while a minimum of
four is sufficient, efficacy tends to improve with a much larger
number of photos). With these images as input, SfM operates
in a pipeline: (1) extraction of the salient characteristics of
a single image, (2) comparison of these characteristics across
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Figure 4: Overall FOCUS architecture. Note that video frame extraction, feature analysis, and alignment to an SfM model
are parallelizable, enabling high analysis throughput from our Hadoop-on-cloud prototype.

images to find shared points of reference, and (3) an opti-
mization on these reference points, constrained by the well-
understood geometry of multiple views, into a reconstructed
3D point cloud. We assume that the SfM model will be gen-
erated and available in advance (perhaps by the operator of
a sporting arena), to be used for analysis as live video feeds
arrive at the FOCUS cloud service. In Section 5, we consider
relaxing this assumption, using the content of incoming video
feeds themselves for model generation.

Reconstructing 3D from 2D Images. For each image,
a set of keypoints is found by computing a feature extractor
heuristic [33]. Each keypoint is a 2D < x, y > coordinate
that locates a clear point of reference within an image — for
example, the peak of a pitched roof or corner of a window.
Ideally, the keypoint should be robust, appearing consistently
in similar (but not necessarily identical) images. For each
keypoint, a feature descriptor is also computed. A feature
descriptor may be viewed as a “thumbprint” of the image,
capturing its salient characteristics, located at a particular
keypoint. We use the SIFT [33] extractor/descriptor.

Across multiple images of the same physical object, there
should be shared keypoints with similar feature descriptor
values. Thus, for the next stage of the SfM pipeline, we can
perform a N2 pairwise matching across images, by comparing
the feature descriptors of their keypoints. Finally, the true
SfM step can be run, performing a nonlinear optimization on
these matched keypoints, according to the known properties
of perspective transformation in a 3D Euclidean space. Once
complete, the output is the 3D model in the form of a point
cloud, consisting of a large number of < x, y, z > points.

Figure 5: 3D reconstruction using Bundler SfM. 33K
points from 47 photos of a university plaza, model post-
processed for enhanced density/visual clarity.

Each 3D point corresponds to 2D keypoints extracted and
matched from the original images.

Figure 5 shows the construction of a 33K-point model of
a campus plaza from 47 high resolution photos. Figure 6
shows an (overhead view) 190K-point cloud generated from
412 photos of a 34K-seat collegiate football stadium. Note
that model generation is feasible in both outdoor and indoor
spaces, given sufficient light (not shown, we generated a 200-
photo, 142K-point model of an indoor basketball arena).
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Figure 6: 3D reconstruction of a collegiate football sta-
dium. Red dots show an overhead 2D projection of
the 3D model. Black dots show locations from which
photographs of the stadium were captured, systemati-
cally, around the top and bottom of the horseshoe-shaped
grandstands and edge of the field.

Aligning a Frame to the Model: Estimating Pose. Once
a model is constructed, it is possible to align a image (or video
frame) taken in the same physical space. The alignment re-
sults in an estimate of its relative camera pose, a 3 × 1 trans-
lation vector and a 3× 3 rotational matrix of orientation. The
resulting 4× 4 rotation and translation matrix can be used to
construct the equation of a ray, with a point of origin at the
camera, through the subject in the center of the view. This ray
follows the line-of-sight from the camera, enabling similarity
metrics based on view geometry. In Section 4, we evaluate
SfM alignment performance against the stadium model con-
struction shown in Figure 6. However, even prior to pursuing



this technique, it was important to validate that SfM-derived
models are robust to transient environmental changes. For
example, we generated our stadium model for photos cap-
tured during off hours. In Figure 7, we present an exam-
ple image that aligns accurately to our model, taken during
a well-attended football game. Despite occluded bleachers,
alignment is still feasible as much of the core “structure” of
the stadium (i.e., the rigid stands, buildings, and boundaries
captured in the model) remains visible.

Augmenting Vision with Smartphone Sensing. Video
frame-to-model alignment, while quick in FOCUS’ scalable
Hadoop-on-cloud pipeline (Section 3.4), is a heavyweight
process. To reduce the computational burden, it is useful
to combine SfM alignment with inputs from smartphone
sensing. The inertial gyroscope, present on most new smart-
phones today, can provide a rotational “diff” across time,
in the form of a rotation matrix. By matrix multiplication,
FOCUS combines this gyroscope-derived rotational matrix
with that of an SfM-estimated camera pose. We illustrate this
process, akin to a rotational “dead reckoning,” in Figure 8.
Of course, errors will accumulate with time, due to inherent
noise in the gyroscope sensor. FOCUS periodically re-runs
SfM alignment, resetting this noise, and maintaining a
bounded inaccuracy (relative to the last frame-to-model
alignment). Moreover, since SfM alignment itself is prone to
some error, this input from gyroscope can be used to inform
hysteresis across multiple alignment attempts.

Unsurprisingly, video frame-to-model alignment can fail for
several reasons: if the frame is blurred, poorly lit (too dark),
captures sun glare (too bright), the extracted keypoints or fea-
ture descriptors have low correspondence with the model, or
if the model is too sparse, self-similar, or does not capture the
content of the to-be-aligned frame. In a video stream across
time, these failures result in alignment “cavities” between suc-
cessful alignments. To “fill” the cavities, and achieve a con-
tinuous alignment, gyroscope-based dead reckoning is espe-
cially useful. Note that dead reckoning is possible in either
direction, forward or backward with time, from the nearest
successful alignment. To dead reckon forward with time, the
SfM-derived rotational orientation matrix is multiplied with a
gyroscope-derived rotational matrix, accounting for the rel-
ative rotational motion accumulated over the time interval
from the last alignment. To dead reckon in reverse, the gy-

Figure 7: Challenging example photo that aligns accu-
rately to our SfM model (Figure 6), despite capacity at-
tendance (vs. empty during model capture).

SfM Alignment

Figure 8: Illustrating rotational dead reckoning with gy-
roscope. As the user follows a moving target, gyroscope
tracks a rotational matrix “diff” (forward or in reverse in
time) from the closest SfM alignment.

roscope rotational matrix must first be inverted. Luckily, this
inversion is trivial: as an invariant, the inverse of a rotation
matrix is its transpose.

Other smartphone sensors are also valuable during alignment.
GPS, compass, and accelerometer, can be used to estimate a
rough camera pose. While these estimates are prone to er-
ror, due substantial sources of noise in each sensor, they are
valuable to “sanity check” outputs from SfM — immediately
rejecting otherwise-silent alignment failures. In these cases,
dead reckoning can be applied to overwrite what, otherwise,
would be an erroneous alignment result.

3.2 Quantifying Spatial Content Similarity
To cluster video feeds into self-similar groups, FOCUS will
assume a metric to quantify the logical content “similarity.”
Pairs of videos with a high mutual similarity are likely to be
placed into the same cluster. As an invariant, each video will
be placed in the cluster with which it has the greatest spatial
(from line-of-sight) content similarity, averaged across time,
averaged across all other cluster members. In this subsection,
we will present the design of FOCUS’ spatial similarity metric
for a pair of video frames. FOCUS’ metric was not successfully
designed “at once;” instead its techniques were evolved and
refined through system experimentation.

3.2.1 By Line-of-Sight Intersection (Failed Attempt)
FOCUS leverages SfM and gyroscopic tracking to estimate a
3D rays of camera pose — originating from the camera and
along the line-of-sight. For a pair of frames capturing the same
object of interest, the corresponding rays should intersect, or
nearly intersect, through the mutual object in view. One pos-
sible similarity metric is to consider the shortest distance be-
tween these two rays. The resulting 3D line segment must
be either (1) between the two points of origin, (2) from the
point of origin of one ray to a perpendicular intersection on
the other, (3) perpendicular to both rays, or (4) of zero length.
We may treat cases (1) and (2) as having no view similarity;
line-of-sight rays diverge. In cases (3) and (4), shorter line
segments reflect a nearer intersection, and suggest a greater
view similarity. Assuming that the constructed rays are ac-
curate, this metric is not subject to false negatives; for any
pair of videos sharing the same content, the length of the line
segment between the rays must be small. Unfortunately, this
simple metric is not foolproof. False positive indications of
similarity may result; the intended subject may fall in front or
behind the point of ray intersection. For example, if stadium
spectators in the grandstand focus on different players on the
field, this metric will return that the views are similar if the
corresponding rays intersect “underground.”



3.2.2 By SfM “Point Cloud” Volumetric Overlap
During early experimentation, we found that the above ray-
intersection metric, while intuitively appealing in its simplic-
ity, is overly susceptible to false positives. We could eliminate
the potential for false positives by replacing each camera pose
ray with a vector, terminating at the object in view. While
this is difficult to estimate, we can leverage context from the
3D model structure to terminate the vector roughly “on” the
model, for example, capturing the ground below the subject.
Looking down from a stadium grandstand, subterranean in-
tersections would be eliminated. Similarity, intersections in
the air, above the field, can be ignored.

Recall that the SfM model is a point cloud of < x, y, z >
coordinates, capturing rigid structures. Instead of only con-
sidering the geometry of a line-of-sight ray, we may identify
structures captured by a video frame. For a pair of videos,
we can compare if both capture the same structures. Sev-
eral techniques from vision apply here. For example, 3D point
cloud registration heuristics exist for estimating boundaries of
a mesh surface, and approximating structures. However, as a
simpler, computationally-tractable alternative, we may count
the model points mutually visible in a pair of video frames.
More shared points suggest greater similarity in their views.
In the next subsection, we discuss how high similarity values,
filling an N × N spatial similarity matrix, encourage place-
ment of these videos in the same cluster.

To count the number of common points in the intersecting
field-of-views of two videos, we must first isolate the set of
points visible in each. As we describe next, the set can be
found by considering the pyramid-shaped field-of-view vol-
ume, originating from the camera and expanding with dis-
tance into the model. Later, we can quickly count the number
of shared points across multiple video frames by applying a
quick set intersection. Simply, we construct a bitmap with
each bit representing the presence of one point in the view.1

The number of shared points can be found by counting the
number of bits set to 1 in the bitwise AND of two bitmaps.

3.2.3 Finding Model Points in a Video View
Let a single estimated line-of-sight be expressed as L(R, t). R
represents a 3×3 rotation matrix, the 3D angle of orientation.
t represents a 3 × 1 vector of translation. −R−1t defines the
< x, y, z > camera position coordinate, the location in the
model from where the video frame was captured. R can be
further decomposed as three row vectors, known respectively
as RIGHT, UP, and OUT, from the perspective of the camera.
To capture the camera’s view of the model, we form a pyramid
emerging from the camera position (−R−1t) and extending in
the direction of OUT vector. The four triangular sides of the
pyramid are separated, horizontally and vertically, according
to the camera’s field-of-view (Figure 2).

The pyramid-shaped camera view can be abstracted as four
planes, all intersecting at the camera position coordinate.
Now, to fully describe equations for these planes, we must
only find a plane normal vector for each. In order to find four
plane normals, we rotate the OUT vector along the RIGHT
and UP vectors, so that the transformed OUT vector becomes

1Alternatively, Bloom Filters are suitable as probabilistic sub-
stitutes for direct point-to-bit maps, for space-saving bitmaps.

perpendicular to one of these planes. Rotation of any 3D
vector, along a unit-length 3D vector, is given by Rodrigues’
rotation formula. Using this equation, we rotate the OUT
vector along the RIGHT vector by angle ±(π/2 − vAngle/2)
to estimate normals for two planes (top/bottom). Similarly,
rotations along the UP vector with angle ±(π/2− hAngle/2)
results in normals to left and right planes. Here, vAngle
and hAngles are taken as parameters for the smartphone
camera’s field-of-view angle, horizontally and vertically. We
test the signs from these four planar equations for each
point in the model, determining the set of points potentially
visible from a particular video frame. Later, we perform set
intersections to estimate similarity between the N2 pairs of
time-synchronized frames of N videos. This N × N value
table completes our notion of a spatial similarity matrix.

3.3 Clustering by Modularity Maximization
So far, we have discussed what it means for a pair of video
frames to be judged “similar,” especially by the intersection
of their respective line-of-sight and field-of-view with an SfM-
derived 3D model. This notion of “similarity” is a static judg-
ment, based on an instantaneous point in time. In reality, we
are interested in the similarity of a pair of videos, across multi-
ple frames, for some synchronized time interval. This requires
a further understanding of what it means for a pair of videos
to be “similar,” above and beyond the similarity of their con-
stituent frames. We will assume that a pair of “similar” video
streams need not both track the same spot consistently. In-
stead, it is only required that they should both move in a cor-
related way, consistently capturing the same physical subject,
at the same time. Simply, both streams should maintain (in-
stantaneous) similarity with each other across time, but not
necessarily have self-similarity from beginning to end. This
seems reasonable in the case of a soccer game: some videos
will follow the ball, some will follow a favored player, and
others will capture the excitement of the crowd or changes to
the scoreboard. These “logical clusters” should map as neatly
as possible to FOCUS’ groupings.

Spatiotemporal Similarity. To capture the mutual corre-
spondence in a set of N videos with time, we apply our no-
tion of an N × N spatial similarity matrix across T points in
time. For every instant t ∈ T in a synchronized time interval,
we find the corresponding spatial matrix St and apply cluster-
ing, finding some set of groupings Gt from line-of-sight and
field-of-view at time t. Next, we aggregate these spatial re-
sults into an M = N × N spatialtemporal similarity matrix.
Let δg(i, j) = 1 if streams i and j are both placed into the
same spatial cluster g ∈ Gt. δg(i, j) = 0, otherwise.

Mij =
∑
∀t∈T

∑
∀g∈Gt

δg(i, j)

Finally, we apply clustering again, on M , providing groups of
videos matching our notion of spatiotemporal similarity. Next,
we elaborate on our choice of clustering heuristics.

The “Right” (and Right Number) of Clusters. Several
clustering approaches require some parameterization of how
many clusters are desired (e.g., the k value in k-means clus-
tering). By comparison, community identification via modu-
larity maximization has the appealing property that commu-
nity boundaries are a function of their modularity, that is, a



mathematical measure of network division. A network with
high modularity implies that it has high correlation among the
members of a cluster and minor correlation with the members
of other clusters. For FOCUS, we apply a weighted modularity
maximization algorithm [13]. As input, FOCUS provides an
N ×N matrix of “similarity” weights — either that of spatial
or spatiotemporal similarity values. Modularity maximization
returns a set of clusters, each a group of videos, matching our
notions of content similarity.

3.4 Optimizing for Realtime Operation
A key motivation for FOCUS is to provide content analysis
for streaming realtime content in realtime. Excess computa-
tional latency cannot be tolerated as with it increases (1) the
delay before content consumers may be presented with clus-
tered videos and (2) the monetary costs of deploying the FO-
CUS Hadoop-on-cloud prototype. Here, FOCUS makes two
contributions. First, as previously discussed, FOCUS lever-
ages gyroscope-based dead reckoning as a lightweight proxy
to fill gaps between SfM camera pose reconstruction, reduc-
ing the frequency of heavyweight computer vision (alignment
of an image to an SfM-derived model) to once in 30 seconds.
Second, FOCUS applies application checkpointing to combat
startup latency for SfM alignment tasks.

As described in Section 3.1, FOCUS uses Bundler to align an
image (estimate camera pose) relative to a precomputed 3D
model. Bundler takes approximately 10 minutes to load the
original model into memory before it can initiate the relatively
quick alignment optimization process. To avoid this latency,
FOCUS uses BLCR [15] to checkpoint the Bundler application
(process) state to disk, just prior to image alignment. The
process is later restarted with almost zero latency, each time
substituting the appropriate image for alignment.

FOCUS Hadoop Prototype Cluster. FOCUS exists as
a set of cloud virtual machine instances configured with
Apache Hadoop for MapReduce processing. FOCUS informs
virtual machine elastic cloud scale-up/down behavior using
the Hadoop queue size (prototype FOCUS elasticity manager
currently in development). For FOCUS, there are several
types of MapReduce task: (1) base video processing, to
include decoding a live video feed and sampling frames for
further image-based processing; (2) image feature extraction,
computation of feature descriptors for each keypoint, align-
ment to an SfM model, and output of a bitmap enumerating
the set of visible model points; (3) pairwise image feature
matching, used when building an initial 3D SfM model; and
(4) clustering of similar video feeds. Tasks of multiple types
may be active simultaneously.

3.5 Failover to Sensing-only Analysis
In certain circumstances, it may be undesirable or infeasible
to use SfM-based line-of-sight estimation. For example, in an
“iReport” scenario, video may be captured and shared from
locations where no SfM model has been previously built. Fur-
ther, users may choose to upload video only if very few peers
are capturing the same video subject — saving battery life and
bandwidth for the user. A lightweight clustering technique,
without requiring upload of the video stream, could be used
to pre-filter uploads of redundant streams. FOCUS provides a
sensing-only alternative (using GPS and compass), clustering

streams without requiring computer vision processing or even
access to video sources. Through iterative design and testing,
we have refined our technique to be relatively insensitive to
compass error. By considering the wide camera field-of-view
angle in the direction of line-of-sight, our metric is not sub-
stantially impacted by compass errors of comparable angular
size.

For each latitude/longitude/compass tuple, FOCUS converts
the latitude/longitude coordinates to the rectangular Univer-
sal Transverse Mercator (UTM) coordinate system, taking the
EASTING and NORTHING value as an < x, y > camera coor-
dinate. From the camera, the compass angle is projected to
find a 2D line-of-sight ray. Next, two additional rays are con-
structed, symmetric to and in the same direction as the line
of sight ray, and separated by the horizontal camera field-
of-view (hAngle). This construction can be visualized as a
triangle emerging from the GPS location of a camera and ex-
panding outward to infinity (with an angle equal to the cam-
era’s horizontal field-of-view). A metric for view similarity is
computed as the area bounded by intersecting two such re-
gions. Since this area can be infinite, we impose an additional
bounding box constraint. The resulting metric values are used
to populate the spatiotemporal similarity matrix. Clustering
proceeds as for SfM-based similarity. To reduce the potential
for compass error, gyroscope informs a hysteresis across mul-
tiple compass line-of-sight estimates.

To compute the area of intersection (and thus our metric), we
find the intersection of the constraining rays with each other
and with the bounding box, forming the vertices of a sim-
ple (not-self-intersecting) polygon. We may order the vertices
according to positive orientation (clockwise) by conversion to
polar coordinates and sorting by angle. Next, the polygon
area is found by applying the “Surveyor’s Formula.”

4. EVALUATION
Through controlled experimentation2 in two realistic scenarios
and comparison of FOCUS’ output with human efforts,3 we en-
deavor to answer the following key questions:

1. How accurate is line-of-sight for identifying unique sub-
ject locations? (Figs. 10, 12) Indoors? (Fig. 14) For
objects only a few meters apart? (Figs. 11b, 14b)

2. How does GPS/compass-based line-of-sight estimation
compare with SfM/gyroscope? (Figures 3, 11, 17)

3. When video streams are misclassified, are incorrectly
clustered videos placed in a reasonable alternative?
Are SfM processing errors silent or overt (enabling our
gyroscope-based hysteresis/failover)? (Figs. 12, 13)

4. It our spatiotemporal similarity matrix construction ro-
bust to videos with dynamic, moving content, tracking
spatially-diverse subjects with time? (Figure 15)

5. What is the latency of vision-based analysis? (Fig. 16)
6. Is FOCUS’ sensing-only failover approach tolerant to

large compass errors? Can GPS/compass provide a rea-
sonable accuracy when SfM/gyroscope is undesirable,
infeasible, or as temporary failover? (Figures 3, 17)

2Constrained by (a) privacy for video-recording human sub-
jects and (b) copyright ownership for NCAA athletic events.
3The procedures for this study were vetted and approved in
advance by our institution’s ethics and legal review board.
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Figure 9: Experimental locations in/around the stadium.
Symbols denote each video’s focal subject: (∗) East Stand;
(+) Scoreboard; and (◦) West Stand.

7. How do FOCUS’s clusters compare with those created
by human volunteers? (Figure 20)

Methodology. Our FOCUS evaluation takes the perspective
of a likely use case: user video streams in a collegiate foot-
ball stadium and an indoor basketball arena. With 33K seats
and a maximum attendance of 56K, by sheer numbers, it is
likely that multiple (even many) visitors to our stadium would
choose to stream video simultaneously. To exercise FOCUS
across dynamic lighting by time of day, a range of cloud cover,
variations in attendance, a span of videographer skill, and
transient occlusions,4 we collected short video clips from the
stadium over a period of two months.

To build the stadium SfM model, containing 190K points and
shown in Figure 6, we took 412 2896x1944 resolution pho-
tographs with a Nikon D3000 SLR camera. All videos were
taken in 1920x1088 resolution at 15 FPS, using our Android
app, on a Samsung Galaxy Nexus or Galaxy S3. In line-of-
sight estimation results, short clips (20-30 seconds each) were
used. For longer motion tracking results, videographers were
asked to keep the running “athlete” centered in view as con-
sistently as possible, over periods of minutes.

Line-of-sight Estimation Accuracy. Using our app, three
large, preselected points-of-interest in the stadium were
filmed: (1) bleachers where the “pep” band sits, centered
in the the EAST STAND; (2) the press box above mid-field in
the WEST STAND; and (3) the SCOREBOARD.5 Videographers
walked around arbitrarily, capturing each of the intended
subjects from 325 locations (shown in Figure 9, with locations
from GPS, marked by intended subject). Figures 10 (a,b,c)
show visualizations of SfM/gyroscope-based line-of-sight
estimation accuracy, for each subject. Dark lines show
estimated line-of-sight. Rough convergence through the
designated subject in the EAST STAND, SCOREBOARD, or
WEST STAND, respectively, visually suggests that typically
SfM frame-to-model alignment is highly accurate. Figure 11
(a,b) plot CDFs, confirming this accuracy. Further, 11 (a,c)
4For example, an opaque protective tarp not captured by our
SfM model was typically present, covering the entire field.
5Large subject areas chosen to reduce impact of human film-
ing error. Figure 11(b) confirms applicability to small subjects.

confirm the inferior accuracy of line-of-sight estimation with
GPS/compass (only). Note that in both Figures 10 and 11,
a substantial portion of angular “error” is attributable to
inaccuracy in filming a designated subjects. Visible outliers
in Figure 10 (b) are attributable to poor SfM alignment,
typically due to difficult viewing angles (e.g,. closeups).

Spatial Clustering Accuracy. Figure 12 summarizes the
accuracy of FOCUS spatial clustering using SfM/gyroscope
in a challenging scenario: clustering on 325 video streams
simultaneously (using sequentially-collected 20-30 second
video clips as a proxy for a large deployment), from the
diverse set of locations shown in Figure 9. FOCUS placed
each “stream” (video clip) in one of three spatial clusters, or
marked the stream as a processing failure (no SfM alignment,
e.g., due to blur). For every assigned member of every spatial
cluster, we compared the video’s intended subject to the
geographic centroid of each output cluster. If the assigned
cluster was the closest (geographically) to the intended
subject, it was considered a “true positive” result (placed
in the most correct cluster). Otherwise, it was considered
both a “false negative” for the intended subject and “false
positive” for its actual placement. Note that we consider false
positives/negatives less desirable than processing failures, as
they represent a silent failure. Sanity checking (by GPS, com-
pass, and accelerometer) was not applied. Further, though
gyroscope-based hysteresis was used in this experiment,
correcting several poor SfM alignments, the short video
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Figure 12: Stadium spatial clustering accuracy. For each
True Positive, FOCUS correctly aligned a video clip and
placed it into a cluster with others predominantly captur-
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Figure 10: Estimated line-of-sight rays on stadium model with true focal subject: (a) in the East Stand; (b) on the
Scoreboard; and (c) in the West Stand. Converging lines reflect precision of SfM line-of-sight estimation.
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Figure 11: CDFs of alignment “error.” Y-axis shows the shortest distance from the estimated line-of-sight ray to the
intended subject: (a) SfM/gyroscope versus GPS/compass overall; (b) SfM/gyroscope by subject; (c) GPS/compass by
subject. Note that a nontrivial error proportion is attributable to videographer imprecision.
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Figure 14: Indoor performance in a collegiate basketball arena: (a) example image from SfM model generation; (b)
SfM/gyroscope line-of-sight estimation accuracy (110 locations); (c) spatial clustering accuracy.

clip time interval limited opportunities for dead reckoning.
Figure 13 presents a confusion matrix showing how false
positive/negative cluster assignments were distributed. As
expected, nearer subjects were more frequently confused.
Overall results achieve 75% “true positive” success. 19%
are processing failures, in which case FOCUS would invoke
GPS/compass failover (we disabled FOCUS’ failover for this
experiment to restrict results to SfM/gyroscope exclusively).

Indoor, Low-light Performance. We tested in a 10K-seat
basketball arena. Strong performance in this challenging in-
door environment, where GPS/compass-based techniques do
not apply and under relatively low light, demonstrates generic
applicability across environments. Figure 14 shows: (a) an ex-

ample photo from our SfM model; (b) line-of-sight estimation
accuracy; and (c) spatial clustering accuracy.

Spatiotemporal Clustering. Figure 15 presents a dynamic
scenario for FOCUS, tracking four video streams across a pe-
riod of minutes. Each stream is tracking one of two “athletes”
(fit volunteers) on the stadium running track. The athletes ran
around the track in opposite directions (clockwise and coun-
terclockwise), crossing paths multiple times. In the figure,
each stream is represented by a marker (4, ◦, +, ∗). Each
grouping along the Y-axis denotes a particular video stream.
Along the X-axis, we show markers at every second of a four-
minute video. A dark (black) marker denotes a true positive
result: a stream, for the corresponding one-second interval,



was placed in the same spatial cluster as was the true videog-
rapher intent (same as that of symbol along Y-axis). A light
(red) marker denotes a false positive result: a stream, for the
corresponding one-second interval, was placed in the same
spatial cluster as that of symbol along the Y-axis, but contra-
dictory to to the true videographer intent. The figure illus-
trates that, typically, FOCUS is able to place a pair of videos
with matching content into a matching cluster. It also cap-
tures all the data required to construct the spatiotemporal
matrix of content similarity for these clips. The final, over-
all spatiotemporal clustering successfully outputs the correct
stream-to-athlete matching (4 and ◦ grouped for athlete A
subject, + and ∗ grouped for athlete B subject). This result
was successful even though stream 4 suffered an extended
80-second period during which SfM alignment failed (due to
deficiencies in our stadium model), leveraging our gyroscope-
based dead-reckoning for seamless tracking.

Computer Vision Computational Latency. FOCUS’ end-
to-end performance is largely a function of vision processing,
especially the dominating subtask: alignment of extracted fea-
tures to a precomputed SfM model. Figure 16 plots single-
threaded performance. In ongoing work, we are investigating
ways to further expedite processing leveraging state-of-the-art
techniques for fast alignment [14,28,41].

Tolerance of Sensing-only Failover to Compass Error.
FOCUS’ sensing-only failover (GPS/compass-based line-of-
sight estimation) must be tolerant to substantial compass
error. We tested failover by introducing random Gaussian
errors to ground truth compass angles (GPS locations were
used unmodified from experimental locations). Figure 17
shows diminishing clustering accuracy with extreme compass
error, but solid performance with angular error having a
standard deviation of 20 degrees, clustering at 85% accuracy.
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Figure 15: (a) Y-axis shows four videos, (4) and (◦) cap-
ture athlete A, (+) and (∗) capture B. Markers show
streams placed into the same cluster, by time. Dark mark-
ers are matching subject. (b) Spatiotemporal matrix M :
Mij denotes the number of spatial clusters where stream
i and j were mutually placed.
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Figure 16: CDF of processing latency: video frame feature
extraction, SfM frame-to-model alignment.
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Figure 17: Box-and-whisker plots showing performance of
GPS/compass-only failover by compass accuracy. X-axis
shows standard deviation of introduced Gaussian com-
pass errors (angles in degrees).

User Study: Comparison to Human-created Clusters.
We recruited 70 volunteers (demographics in Figure 18) to
compare FOCUS’ clusters to human groupings. Participants
manually formed clusters from 10 randomly-selected videos
(either from the football stadium or basketball arena datasets)
by “dragging-and-dropping” them into bins, as shown by the
screenshot in Figure 19. We adapt metrics from informa-
tion retrieval to quantify the correctness of both human and
FOCUS-created clusters: precision, recall, and fallout, using
predefined labels of videographer intent.

For understanding, precision roughly captures how consis-
tently a volunteer or FOCUS is able to create groupings where
each member of the group is a video of the same intended
subject as all other members. Recall captures how completely
a group includes all videos of the same intended subject. Fall-
out captures how often a video is placed in the same group as
another video that does not capture the same intended subject
(lower values are better). More precisely:

Let V = {v1, v2, . . . , vn} be a set of videos under test. Let
C(vi, vj) = 1 if vi and vj are placed in the same cluster, 0
otherwise. Let G(vi, vj) = 1 if vi and vj should be placed in
the same cluster, according to ground truth, 0 otherwise.

PRECISION =
|{∀vi, vj ∈ V s.t. G(vi, vj) ∧ C(vi, vj)}|

|{∀vi, vj ∈ V s.t. C(vi, vj)}|

RECALL =
|{∀vi, vj ∈ V s.t. G(vi, vj) ∧ C(vi, vj)}|

|{∀vi, vj ∈ V s.t. G(vi, vj)}|

FALLOUT =
|{∀vi, vj ∈ V s.t. ¬G(vi, vj) ∧ C(vi, vj)}|

|{∀vi, vj ∈ V s.t. ¬G(vi, vj)}|



As shown by Figure 20, FOCUS’ precision, recall, and fallout
percentages compare favorably to that of volunteers. Note
that the performance of FOCUS occasionally (though not typ-
ically) exceeds that of our volunteers. We found that for hu-
mans, as well as for FOCUS, videographer intent is subjective
and can be ambiguous to a third party. In some (randomized)
cases, the volunteers were asked to cluster images which look,
subjectively, quite similar but actually capture different phys-
ical locations. FOCUS was able to find small details to distin-
guish the locations that were not obvious to our volunteers.
We observed a few trial participants and found them surprised
when we debriefed them of errors in their clustering choices.

5. LIMITATIONS AND DISCUSSION
Difficult Scenarios for Structure from Motion. FOCUS is
designed to work in locations where it is feasible to visually
reconstruct a sound 3D model of the physical space. Recon-
struction efficacy is subject to the properties of the feature
detection algorithm, algorithms to identify edges or corners
of a rigid structure. Stadiums and open areas between build-
ings, for example, are compliant environments as they con-
tain large rigid structures, likely to produce many consistent
keypoints across multiple images. Even when filled with spec-
tators, the rigid structure of a stadium grandstand is still pre-
served (and thus are so many keypoints in the SfM model,
see Figure 7). However, in other contexts, environmental dy-
namism may hide rigid structures, such as in a parade with
large floats. Further, open fields, areas heavily occluded with
trees, and tight indoor spaces will present a challenge to SfM,
yielding poor results with FOCUS. We have not systematically
explored the performance of FOCUS under heavy occlusions.
In such cases, we assume SfM to fail and expect to failover to
sensing-only techniques. Unsurprisingly, the efficacy of SfM is
also dependent on lighting conditions. Dimly lit environments
and outdoor environments at dawn or dusk yielding sun glare
are especially challenging. For all such extreme cases, overall
accuracy will roughly equate to sensing-only performance, as
SfM alignment rarely results in silent failures.

Average Reported Age 45
% Male / % Female 79% / 21%
% own a smartphone 82%
% use smartphone for taking photos 88%
% use smartphone for taking video 60%
% share multimedia on social networks 41%

Figure 18: User study volunteer demographics.

Figure 19: Screenshot from the user study interface. Vol-
unteers “drag-and-drop” 10 animated GIF images (sam-
pled from short video clips) from the left to define one or
more “clusters” with boxes on the right.

Optimized Frame Selection for Alignment. Predictably,
not all video frames are equally amenable to SfM alignment.
Leveraging sensory inputs or lightweight computer vision, it
is possible to identify which video frames are likely to be
the “best” for further processing. For example, any of ac-
celerometer, gyroscope, or visual inputs can be applied to
identify shaken and blurred views. Similarly, simple visual
metrics, such a color histogram or spatiograms [10], would
be useful in detecting a change in the presence of occlusions.
Gyroscope-based dead reckoning is again useful here, making
it easy to select, align, and leverage a compliant frame.

Reconstructing 3D Models “on the Fly”. In our evalua-
tion, we have considered environments where it is feasible to
precompute the SfM 3D model. In a stadium for professional
or collegiate sports, for example, we imagine an employee
or fan taking photographs of the arena, in advance, as input
to our Hadoop-based model generation pipeline. However,
with a goal to streamline practical deployment of the FOCUS
system, we believe it is also possible to construct the model
dynamically, using the content of the video streams them-
selves. Fundamentally, SfM is able to build a model by lever-
aging a diversity of perspective across multiple views of the
same object: normally achieved by taking photos while mov-
ing through a space. A similar diversity is inherently avail-
able across the various feeds coming into system.6 During
the bootstrap period, during which sufficient images are gath-
ered and the model is constructed, FOCUS would leverage its
sensing-only failover technique, operating at a reduced accu-
racy until the model is complete. We tested model generation
from streams as part of our indoor arena evaluation — from
60 video clips, we reconstructed an SfM model of comparable
quality to that generated from still images.

Applications. We exclude a thorough treatment of how one
might leverage (e.g., query) FOCUS’ output video clusters.
Section 4 evaluates in the context of sports, but many novel
presentations are possible. Rather than domain-specific, our
target is a generic construct to extract “app-enabling” meta-
data: logical pointers to videos capturing the same subject.

6. RELATED WORK
Structure from Motion and Related. FOCUS applies struc-
ture from motion (SfM) to generate 3D models from multiple
images, leveraging Bundler [37]. [8] uses Bundler to develop
a large-scale 3D model of Rome from a corpus of photographs
available on image sharing websites. [17,18,42] generate SfM
models from continuous video sequences. Such models can be
directly used by FOCUS. [14, 28, 41] propose various meth-
ods for fast alignment of an image into an existing SfM 3D
model using motion patterns and inertial sensing. These tech-
niques are complementary to FOCUS, improving the speed of
line-of-sight estimation. [21] uses LED markers to estimate
camera pose. [38] develops an iPhone photography game for
city-scale SfM. [29] applies SfM and sensing to estimate the
location of a remote object.

Visual Similarity Analysis and Tracking. Video content
matching and grouping is not unique to FOCUS, especially
leveraging computer vision. [20] constructs graphs to connect
related imagery in a large collection. [24] considers the

6Historical videos can also be used (e.g., from YouTube).
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Figure 20: CDFs comparing FOCUS accuracy versus ground truth to human-generated clusters from the user study. FOCUS’
clustering accuracy is comparable to that of volunteers; (a) Precision; (b) Recall; (c) Fallout.

use of video sensors for cooperative tracking of surveilled
subjects. [16, 30] find similar actions in sports games,
identifying videos and the time of action. [25, 26, 34]
apply image processing such as background subtraction,
compositing, and increasing dynamic range to identify similar
content in video and images. [19, 40] visually track a shared
subject from multiple cameras in complex situations. [36]
enables geo-referenced video search, similar in spirit to our
GPS/Compass sensing-only failover approach.

Crowdsourcing and Localization. The power of crowd-
sourcing is widely confirmed. The ubiquity of mobile phones
is helping to enable such systems on a large scale. [9, 11,
27, 31] propose various methods on collaborative and con-
tinuous sensing using smartphones, enabling multimedia tag-
ging and organization by mining over contextual cues gener-
ated from inertial sensors and image processing. [32, 39] use
crowdsourcing for image search over large collections of pho-
tographs. [22,23,29] apply sensing to localization.

Sports and Industries. [2] deploys/monitors laser cameras
on commercial stadiums for tracking player movements. [35]
is a connects collocated TV viewers to enhance a social view-
ing experience. [7,12] personalize sports multimedia feeds for
different viewers. [3–6] enable users to create and share col-
laborative video experiences. [1] considers GPS and compass
in image metadata to organize content from related angles.

7. CONCLUSION
The value of user-uploaded video is both immense and frag-
ile. YouTube and other sites depend on a haphazard collection
of manual tags and machine-mineable comments. Real-time
content, prior to the availability of this crowdsourced con-
text, is difficult to index. With the trends towards enhanced
wireless data connectivity, improved smartphone battery life,
and adoption of the cloud for low-cost, scalable computation,
we envisage widespread distribution of user-uploaded real-
time video streams from mobile phones. FOCUS is a system
to analyze this live content, in realtime, finding groups of
video streams with a shared subject. As an immediate high-
value target, we have thoroughly evaluated FOCUS in a col-
legiate stadium environment. Once fully hardened, FOCUS
can be deployed, for example, to enable a crowdsourced “in-
stant replay,” enabling the viewer to inspect multiple angles
of a contentious play. More generally, we believe that FOCUS
is broadly enabling for a variety of next-generation streaming
multimedia applications. Nonetheless, FOCUS is a prototype,
and a work-in-progress. Finally, we see further research op-

portunities in advancing a cloud platform for additional auto-
mated analyeses and distribution of live user video streams.
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