

Listen Before You Talk, But on the Frequency Domain

Souvik Sen (Duke), Romit Roy Choudhury (Duke), Srihari Nelakuditi (University of South Carolina)

802.11 Channel Access Today

Backoff arbitrates channel contention

- AP waits for a random backoff before transmission
- Low utilization because channel must remain idle
- Collisions due to same backoff also reduce utilization

Redesigning 802.11 Channel Contention

- Backoff is fundamentally not a time domain operation
- Can we implement backoff in frequency domain?
- Opportunity: 48 OFDM subcarriers can be used for choosing random backoff

T2F: Time-to-Frequency

- Replace temporal backoff with subcarrier transmission
- Ouring contention:
- AP chooses a random subcarrier to transmit
- Concurrently listens to find other active subcarriers
- Active subcarriers imply contending APs' backoff

Both APs learn that AP1 is winner

- T2F takes 8us Vs 802.11 160us

Frequency Domain Backoff has lower overhead than Time Domain Backoff

Reducing Collisions using Second Round

- In dense networks, multiple winners of T2F backoff
- Winners of the first round repeat T2F backoff
- Few APs in the second round means fewer collisions

Scheduled Transmission

Active subcarriers imply backoff chosen by other APs

- Each AP knows its rank in the sequence
- Enables back to back TDMA like transmission

Multiple Collision Domain Coexistance

Insert PIFS delay between sequential transmissions AP1 AP3 AP2

Backoff			
Ť		S+ACK	
S 21 13	Data		Wait for DIFS
S 5 29	Wait until 13 finishe	s Wait for PIFS	Data
		F	PIFS
	DIFS Data	a	Wait for DIFS
	5 21 13 5 5 29	5 21 13 Data 5 5 29 Wait until 13 finisher DIFS Data	3 21 13 Data 3 5 29 Wait until 13 finishes Wait for PIFS F DIFS DIFS Data

Practical Constraint: High Self Signal

Use higher FFT sizes at the listening antenna

Testbed Implementation and Evaluation

8 node USRP/GNURadio testbed Subcarrier detection accuracy of ~95%

Low collision probability with two rounds Upto 70% throughput gain over 802.11

- Due to reduced overhead and fewer collisions

Ongoing Work

- Improve subcarrier detection accuracy
- Experiment with multiple collision domains
- Online implementation in progress