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ABSTRACT
This paper explores the possibility of detecting the hidden

presence of wireless eavesdroppers. Such eavesdroppers em-

ploy passive receivers that only listen and never transmit

any signals making them very hard to detect. In this paper,

we show that even passive receivers leak RF signals on the

wireless medium. This RF leakage, however, is extremely

weak and buried under noise and other transmitted signals

that can be 3-5 orders of magnitude larger. Hence, it is missed

by today’s radios. We design and build Ghostbuster, the first

device that can reliably extract this leakage, even when it

is buried under ongoing transmissions, in order to detect

the hidden presence of eavesdroppers. Ghostbuster does not

require any modifications to current transmitters and re-

ceivers and can accurately detect the eavesdropper in the

presence of ongoing transmissions. Empirical results show

that Ghostbuster can detect eavesdroppers with more than

95% accuracy up to 5 meters away.
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Figure 1: Ghostbuster’s threat model.

1 INTRODUCTION
Eavesdropping on wirelessly transmitted data is a long stand-

ing security threat in wireless networks. Wireless radios of-

ten rely on cryptographic solutions to defend against eaves-

dropping. However, encryption standards are under constant

attack and can certainly suffer from security loopholes. [24]

is a classic example that shows how the universally adopted

WPA2 WiFi security standard is vulnerable to a “key rein-

stallation attack”, allowing the attacker to decrypt packets.

Various side channel attacks have also been shown to exploit

electromagnetic or acoustic signals to extract the encryption

key [5–8]. Furthermore, due to low cost, low power require-

ments, some wireless IoT systems adopt weak encryption

protocols or lack encryption altogether, leaving them widely

exposed to eavesdropping [9, 10, 13, 26].

Unfortunately, detecting the presence of an eavesdropper

remains an open problem. Wireless receivers are passive

devices that only listen on the medium without transmitting

any signal. Hence, there are no practical solutions today to

discover eavesdroppers. Yet, such a capability can serve as

a strong primitive in defending against eavesdroppers. In

light of this situation, we ask whether it is possible to detect
the hidden presence of a passive wireless eavesdropper planted
in the environment?

This paper takes the first steps towards positively answer-

ing this question. In doing so, we rely on the following key

observation: even though a wireless eavesdropper does not

produce active signals, its underlying hardware does leak

RF signals on to the frequency spectrum. Specifically, every

https://doi.org/10.1145/3241539.3241580
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wireless receiver must use a local oscillator to generate a

sinusoidal signal at the center frequency of operation, e.g.,

2.4 GHz or 5 GHz for WiFi. This sinusoidal signal is mixed

with the received wireless signal to down-convert it to base-

band for digital sampling and processing as shown in Fig. 1.

Even if the wireless radio is only receiving and not transmit-

ting, this sinusoidal signal can leak back through the antenna

onto the wireless medium.

The leakage, however, is extremely weak. In fact, it is sig-

nificantly below the noise floor and hence, cannot be detected

by today’s wireless receivers. One solution is to capture the

signal over a long time window, e.g. 1 sec, and compute a

multi-million point FFT over all collected samples in order

to average the leakage and bring it above the noise floor.
1

However, taking such a large time window is bound to in-

clude packets transmitted on the wireless medium as well

as leakages from other legitimate receivers. As a result, the

eavesdropper’s leakage will be buried under other transmit-

ted signals which can be three to five orders of magnitude

larger.

In addressing the above challenge, we introduce Ghost-

buster, a device that can extract the leakage of a wireless

eavesdropper buried under noise and transmitted signals

without requiring any modifications to current transmitters

and receivers. Ghostbuster leverages MIMO, multiple an-

tenna systems, to separate the leakage from the transmitted

signals in the antenna/spatial domain. Specifically, Ghost-

buster can estimate the wireless channel from the transmitter

and use it to zero-force the transmitted signals. Once the

signal source is canceled, the leakage from the eavesdropper

is revealed.

Of course, a robust separation of the weak leakage would

require very efficient MIMO cancellation of the transmitted

signals. While current MIMO algorithms can separate signals

transmitted from two or more sources of comparable power

for the purpose of decoding data bits, they cannot sufficiently

cancel the transmitted signal for the purpose of extracting

the leakage. To understand why, recall that Ghostbuster must

take an FFT over a very large time window which would

include several transmitted packets. Hence, over this time

window the transmitted signal will exhibit discontinuities.

These discontinuities manifest as artifacts and spurious fre-

quencies in the frequency domain that are hard to cancel with

standard MIMO techniques and ultimately leave a residual

that continues to mask the leakage from the eavesdropper.

To perfectly cancel the transmitted signal, Ghostbuster

leverages a two-stage recovery and cancellation algorithm

that performs cancellation in two domains: spatial domain

1
Note that the receiver used to capture the signal must configure its own

local oscillator to a slightly shifted center frequency in order to ensure that

its own local sinusoid does not overshadow the eavesdropper’s leakage.

and frequency domain. In the first stage, Ghostbuster uses

a new recovery algorithm that can extract the values of the

frequencies in the continuous frequency spectrum in order

to properly estimate the artifacts caused by discontinuities

in the signal and cancel them in the frequency domain. In

the second stage, Ghostbuster estimates and computes a

higher resolution wireless channel across the differentMIMO

antennas that allows us to efficiently cancel the transmitted

signals and the artifacts after taking a very large FFT in

the spatial domain. This enables Ghostbuster to extract the

leakage signals from the eavesdropper.

In addition to canceling transmitted signals, Ghostbuster

must also separate the leakage of the eavesdropper from

the leakage of other legitimate receivers. To do so, Ghost-

buster leverages the frequency dimension where hardware

imperfections cause small frequency offsets at different re-

ceivers. Ghostbuster exploits these hardware imperfections

to separate the leakages from different receivers.

We built a prototype of Ghostbuster with multiple anten-

nas using USRP N210 software defined radios. We evaluated

Ghostbuster in an office building using both USRPs as eaves-

droppers at 900 MHz, 1.8GHz and 5GHz as well as WiFi cards

placed in monitor mode at 5 GHz.We also ran experiments in

a large empty parking lot where there were no WiFi signals.

Our results show that Ghostbuster can detect the presence

of USRP eavesdropper with more than 95% accuracy up to

5 meters despite ongoing transmissions and leakages from

other receivers. For WiFi Card based eavesdroppers, Ghost-

buster can detect them with 89% accuracy up to 1 meter in

the presence of ongoing transmissions and leakages from

other WiFi cards.

Ghostbuster, to the best of our knowledge, is the first

system that can practically discover the mere presence of

hidden eavesdroppers passively listening on the wireless

medium even in the presence of ongoing transmissions and

other receivers. In doing so, Ghostbuster does not require any

changes to the current wireless transmitters and receivers

being used today. Hence, it provides a readily deployable

active defense layer against eavesdropping.

While Ghostbuster can extract and separate the leakage

of the eavesdropper from other transmitters and receivers, a

current limitation of our system is its inability to tell which

leakage corresponds to the eavesdropper and which corre-

sponds to the legitimate receiver. Our current threat model

assumes that Ghostbuster knows the number of legitimate

receivers since they are typically in plain sight and hence,

can discover an eavesdropper by detecting additional leakage

signals. While this might be difficult in some office and home

WiFi networks, it can be adopted in secure facilities where

the number of radios can be known and controlled. Section 6

discusses the future work to overcome such limitation.
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Figure 2: Simplified receiver architectures used in commercial off-the-shelf WiFi cards.

2 PROFILING RF LEAKAGE
We will start by characterizing the RF leakage from wireless

receivers. We will focus on two types of receivers: WiFi cards

and software defined radios.

2.1 WiFi Cards
An adversary can configure a WiFi card to operate in moni-

tor mode. In this case, the card will not transmit any packets

and will only receive which would hide the presence of the

eavesdropper. While WiFi operates in the 2.4 GHz and 5 GHz

bands, the leakage need not be in the same frequency. The

exact frequency of the leakage depends on the hardware

architecture of the receiver and the frequency of the local

oscillator. We will describe several architectures commonly

used in off-the-shelf WiFi receivers. The choice of architec-

ture and trade-offs depend on circuit optimizations which are

beyond the scope of this paper. However, it is important to

examine these designs in order to determine the frequency

of leakage that will allow us to detect the presence of an

eavesdropper.

We examined over 20 WiFi Cards in desktops, laptops,

cellphones and access points that run different protocols

including 802.11a, b, g, n, ac. The cards useWiFi chipsets from

three main manufacturers: Intel, Qualcomm, and Broadcom.

Fig. 2 shows four different simplified architectural designs

used in these chipsets. The first design is direct conversion

where the local oscillator generates a 2.4 GHz or 5 GHz

signal that is directly used to down-convert the received

signal to baseband. The second design, shown in Fig. 2(b), is

commonly used in WiFi cards that operate at 2.4 GHz. The

local oscillator generates a 4.8 GHz signal that is then divided

to generate a 2.4 GHzwhich is mixed with the received signal.

In this case, the strongest leakage observed is at 4.8 GHz.

The third and fourth leverage a heterodyne (multi-stage)

architecture where the signal is first down-converted to an

intermediate frequency and then again to baseband. For 2.4

GHz, shown in Fig. 2(c), the main local oscillator generates a

signal between 3.2 GHz and 4 GHz that is divided to generate

a signal between 1.6 GHz and 2 GHz. This signal is used to

down-convert the received signal to a center frequency of

680 MHz. Then, another local oscillator at 680 MHz is used

to down-convert it to baseband. In this case, the leakage is

observed at both frequencies of the two oscillators. However,

our observation reveals that the 680 MHz is typically weaker.

Finally, for 5 GHz, the signal is also down-converted twice.

However, a single local oscillator is used as shown in Fig. 2(d).

To formalize this, we can express the frequency of the

leaked signal fl as a function of the center frequency fc for
each one of the architectures:

(a) fl = fc

(b) fl = 2 × fc

(c) fl = 2 × (fc − 680 MHz)

(d) fl = 2/3 × fc

(1)

It is important to understand the different designs in order

to determine at which frequency the leakage will occur and

hence, set Ghostbuster to receive at the desired frequency.

As described earlier, Ghostbuster will set its own center fre-

quency f ′c slightly shifted from the leakage frequency to

ensure the leakage from its own local oscillator does not

overwhelm the leakage from the eavesdropper, i.e. Ghost-

buster sets f ′c = fl + ∆f . It can then capture samples over a

long time window and take an FFT of the captured samples.

If an eavesdropper is present, it should see a sharp spike in

the FFT bin corresponding to a frequency of ∆f .
To verify the feasibility of detecting leakage from WiFi

cards, we conducted experiments on over 20 cards. To avoid

interference fromWiFi devices and access points, we ran the

experiments in a large parking lot with no WiFi interference.

We placed theWiFi cards in monitor mode to ensure they are

only receiving and used a USRP software radio placed 1meter

away to measure the leakage. For each card, we collected

signals over a window of 1 second and measured the SNR

of the leakage. We verified that the leakage disappears once

the card is turned OFF.

Table 1 shows the resulting leakage frequency and SNR

of the leaked signal when the WiFi card is set to frequency

bands with center frequency fc = 2.437 GHz and fc = 5.745



WiFi Chipset/

Frequency Band @ fc = 2.437 GHz Frequency Band @ fc = 5.745 GHz

Design

Leakage freq. Leakage SNR

Design

Leakage freq. Leakage SNR

USRP Daughterboard in GHz @ 1m in dB in GHz @ 1m in (dB)

Broadcom: BCM43xx, BCM4329,

a 2.437 12.8 –23.0 a 5.745 10.7–25.01

BCM4360, BCM4352, BCM43526

Intel: 4965 c 3.514 19.8 a 5.745 10.7

Intel: 3165, 5100, 5300 b 4.874 12.6–19.7 d 3.65 20.4–22.2

Intel: 7260, 7265, 8260 b 4.874 10.1–13.1 a 5.745 12.6–16.0

Qualcomm: AR93XX b 4.874 11.3 d 3.65 21.1

Qualcomm: AR9271,

b 4.874 7.2–14.3 N/A N/A N/A

AR9485, AR9170

USRP N210: SBX board a 2.437 50.8 N/A N/A N/A

USRP N210: CBX board a 2.437 50.2 a 5.745 56.7

USRP N210: UBX board a 2.437 53.4 a 5.745 57.5

Table 1: Leakage measured 1 meter away for different WiFi eavesdroppers.

GHz. Since many WiFi cards, laptops and cellphones use

the same underlying WiFi chipset, we report the results for

different chipsets. The table shows that the frequency of the

leakage depends on the WiFi chipset architecture and the

leaked frequency matches the expected value derived from

Eq. 1. The table also shows that for all architectures, the

leakage at 1 m is above 7 dB and can reach 25 dB. Hence, it

can be detected at even farther distances.

Two points are worth noting:

• Higher SNR can be achieved by averaging over a longer

time window. Specifically, we have used a time window of

1 sec. By collecting more samples from a window that is

K× larger, the SNR of the leakage signal will increase by

10 log
10
(K) dB as we will show in the results section.

• The best eavesdropper strategy is to use a cardwith a direct

conversion architecture as shown in Fig. 2(a). This ensures

that the leakage will be in the same frequency band and

will be masked by other transmitters and receivers in the

environment.

2.2 USRP Software Defined Radios
An adversary can also use a USRP software defined radio to

eavesdrop on ongoing transmissions. The advantage of using

USRPs is that they are frequency and protocol independent.

An adversary can configure the software radio to receive

at any frequency between 10 MHz and 6 GHz can decode

the received signal in software, independent of protocol. To

operate at different frequencies, the USRP software radio

requires using an RF daughterboard that supports the fre-

quency range of operation. All daughterboards use the direct

conversion architecture and hence are expected to leak at

the center frequency of operation.

We experiment with USRP N210 using three daughter-

boards: SBX (400 MHz – 4.4 GHz), CBX (1.2 GHz – 6 GHz)

and UBX (10 MHz – 6 GHz). Table 1 also shows the leakage

for an eavesdropper 1 meter away using a USRP software ra-

dio with these daughterboards to eavesdrop on WiFi packets.

In this case, the SNR of the leakage signal is around 50 dB

which is significantly higher than WiFi cards. This, however,

is expected since the USRP’s RF circuits use a simple hard-

ware architecture whereas WiFi chips are heavily optimized

and use state-of-the-art components that minimize leakage.

3 GHOSTBUSTER
While the above shows the feasibility of detecting RF leakage

fromWiFi cards and software defined radios, it assumes there

are no transmissions on the medium. However, this is not

true in practice since taking an FFT over a large time window

(e.g. 1 sec) is bound to include transmitted packets. To address

this, we introduce Ghostbuster, a device that can extract the

RF leakage of a wireless eavesdropper even if it is buried

under large transmitted signals.

We will describe Ghostbuster in the context of WiFi net-

works. For simplicity, we will first focus on the case where

there is a single WiFi transmitter and an eavesdropper. We

will specifically describe Ghostbuster’s algorithms for OFDM

based packet transmissions since OFDM is the most preva-

lent modulation scheme used today.

In order to extract the eavesdropper’s leakage, Ghostbuster

must first nullify the transmitted packets along two dimen-

sions:

• Spatial Dimension: Ghostbuster leverages MIMO to can-

cel the transmitted signal and separate it from the eaves-

dropper’s RF leakage.

• Frequency Dimension: Ghostbuster estimates and can-

cels artifacts and spurious frequencies resulting from dis-

continuities in the time domain signal.



3.1 Spatial Cancellation with MIMO
Consider a Ghostbuster system with a two antenna MIMO.

Let y1(t) and y2(t) be two time domain signals received con-

currently on each antenna. Let x(t) be the transmitted signal

and e(t) be the eavesdropper’s leakage. Ghostbuster receives:

y1(t) = he1e(t) + ht1x(t)

y2(t) = he2e(t) + ht2x(t)
(2)

where ht1 and ht2 are channels from the transmitter and

he1 and he2 are channels from the eavesdropper to the two

MIMO receivers of Ghostbuster. We can rewrite the above

equation in vector format:

®y = ®hee(t) + ®htx(t) (3)

Fig. 3 shows a representation of these vectors in the antenna

space. By projecting on a direction
®h⊥t orthogonal to

®ht , we
can cancel the signal from the transmitter. The remaining

projection ®ep = ®h
⊥
t · ®y will only correspond to the eavesdrop-

per’s leakage.

However, most wireless systems today like WiFi and LTE

use OFDM. Wideband OFDM signals experience frequency

selective fading. The wireless channel h must be computed

per OFDM bin and cancellation must be performed per bin.

Hence, we can rewrite the above equations per OFDM fre-

quency bin:

Ŷ1(f ) = He1(f )Ê(f ) + Ht1(f )X̂ (f )

Ŷ2(f ) = He2(f )Ê(f ) + Ht2(f )X̂ (f )
(4)

In the above equations, the eavesdropper’s leakage signal

is a single sinusoid i.e. e(t) = cos(2π fl t) and E(f ) = δ (f − fl ).
Hence, the leakage appears in a single OFDM bin. Typically,

this is the DC (zero) OFDM bin since, as discussed earlier,

the optimal strategy of the eavesdropper is to set its center

frequency the same as the transmitted signal. The DC OFDM

bin contains the signal from the transmitter’s local oscillator

and thus modulated data bits are not sent in the DC bin.

It is, however, hard to estimate the channel of the trans-

mitter’s signal in the DC bin in order to cancel this signal.

First, no known preamble bits are ever sent in the DC bin that

would allow us to estimateHt1(fDC ) andHt2(fDC ). Moreover,

at any point, the bin contains the sum of the transmitter’s

signal and the eavesdropper’s leakage making it hard to

separate the two and estimate the channels.

To address this issue, we rely on two key observations.

First, we do not need to know the exact values of the chan-

nels. The ratio of the channels is sufficient for cancelling the

transmitter’s signal. Specifically, if we know the ratios, we

Antenna 1

Antenna 2

ℎ"
	$	

ℎ%
&'

Figure 3: Ghostbuster leverages MIMO to cancel the signal

from the transmitter in the Antenna Space.

can compute:

Ŷ1(f ) −
Ht1(f )

Ht2(f )
Ŷ2(f )

=

(
He1(f ) −

Ht1(f )

Ht2(f )
He2(f )

)
Ê(f ) = CÊ(f )

(5)

where C is some constant.

Second, the signal from the transmitter’s oscillator and

the eavesdropper’s leakage are not completely aligned in

frequency. In particular, the oscillators of the transmitter

and eavesdropper are not physically synchronized. Hence,

they exhibit a small frequency offset which is typically re-

ferred to as carrier frequency offset (CFO = ∆fc ). This offset
can be used to separate the two signals along the frequency

dimension by taking an FFT over a large time window. By

separating the two signals into two different frequency bins,

we can find a frequency bin that contains only the transmit-

ter’s signal on both of Ghostbuster’s receivers i.e.,

Ŷ1(f ) = Ht1(f )X̂ (f )

Ŷ2(f ) = Ht2(f )X̂ (f )
(6)

By taking the ratio of the signals in this bin, we can compute

the ratio of the channel even if X̂ (f ) does not contain a

known preamble bit.
2

Unfortunately, simply taking an FFT over a large time

window is not sufficient to separate the signals in frequency

domain. Over a large time window, the signals exhibit dis-

continuities that result in artifacts and spurious frequencies

which mask the eavesdropper’s leakage. Hence, in order to

detect the eavesdropper’s leakage and cancel the transmit-

ter’s signals, Ghostbuster must first estimate and cancel the

impact of discontinuities along the frequency dimension.

2
Note that within a very narrow frequency band e.g. 1 OFDM bin, the

wireless channel is flat.
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3.2 Frequency Cancellation of Artifacts
Before we describe how Ghostbuster deals with discontinu-

ities, it is important to first understand why discontinuities

result in artifacts and spurious frequencies.

A. Discontinuities & Artifacts:

To better understand this, let us first focus on a single OFDM

subcarrier in a single OFDM symbol shown in Fig. 4(a). The

transmitter takes an inverse FFT of the OFDM symbol to

transform it to the time domain before it transmits it on the

wireless channel as shown in Fig. 4(b). When Ghostbuster

receives this symbol, it takes an FFT over a much larger

time window. This process can be viewed as taking a much

longer periodic time signal and windowing it to the length

to the OFDM symbol as shown in Fig. 4(d). Multiplying a

signal with a window in time is equivalent to convolving

it with a sinc function3 in frequency. Thus, the subcarrier

is convolved with a sinc and once Ghostbuster takes a very

long FFT, the side-lobes of the sinc will appear and mask the

eavesdropper’s leakage.

3
The sinc function is defined as sinc(x ) = sin(x )/x .

The above description only considered one subcarrier from

a single OFDM data symbol. However, side-lobes from all

the subcarriers from all OFDM data symbols in the packet

are going to sum up together which manifests as artifacts

and spurious frequencies. Fig. 5 shows that the side-lobes

from many OFDM subcarriers combine together.

B. Estimating & Cancelling Artifacts:

Consider an OFDM symbol with N subcarriers. Let x(t) be
the time domain version of this OFDM symbol received at

Ghostbuster. In the discrete domain, we have:

x(t) =
N−1∑
k=0

ake
j2π fk t/N +w(t), t = 0, 1, ...,N − 1 (7)

where w(t) is additive white guassian noise, fk is the fre-

quency of the kth OFDM subcarrier
4
and ak is a complex

amplitude corresponding to modulated data bit weighted

by the wireless channel. For example, for BPSK modulation

ak = ±H (fk ) where H (fk ) is the wireless channel.
In order to eliminate the side lobes generated by these

subcarriers, we need to know the continuous values of the

frequency estimates fk as well as the accurate values of

the amplitudes ak . The best estimates of
˜fk and ãk would

minimize the following error function:

E(ã, ˜f) =
N−1∑
t=0

�����x(t) − N−1∑
k=0

ãke
j2π ˜fk t/N

�����2 (8)

where ã is a vector of ãk and
˜f is a a vector of ˜fk .

Ghostbuster uses an iterative algorithm in order to mini-

mize the above error function. It first finds ã that minimizes

E for a fixed
˜f . It then fixes ã and finds

˜f that minimizes

4
Note that due to CFO, the frequency of each subcarrier is shifted and no

longer aligned with integers of the FFT grid.



E. Ghostbuster iterates back and forth until the algorithm

converges and the error is minimized.

Hence, in each iteration, Ghostbuster

• Solves for ã given a fixed ˜f : In this case, the error func-

tion E is convex in ã. In fact, the above optimization is

a weighted least squares problem and has the following

closed-form solution:

ãk =
1

N

N−1∑
t=0

x(t)e−j2π
˜fk t/N

(9)

• Solves for ˜f given a fixed ã: In this case, the error func-

tion E is non-convex in
˜f due to the complex exponentials.

However, if we have good initial estimates of
˜fk that are

within a small interval around fk , then the function be-

comes convex within this interval and we can use gradient

descent to minimize it.

We start by showing that the error function is convex

given good initial estimates of
˜fk . Let us consider a single

subcarrier fk . Our goal is to find ˜fk and ãk that minimize the

error function:

E( ˜fk , ãk ) =
N−1∑
t=0

���ake j2π fk t/N − ãke j2π ˜fk t/N
���2 (10)

We prove the following theorem about the error function:

Theorem 3.1. The error function E( ˜fk , ãk ) is convex for
˜fk ∈ [fk − α , fk + α] for any α < 2/5.

We provide the proof of the above theorem in Appendix A.

Here, we present the intuition behind it. Specifically, we

show that the error function above is the negative of the

aliased sinc function and is given by:

E( ˜fk , ãk ) = |ak |
2N − |ak |

2/N

(
sin(π (fk − ˜fk ))

sin(π (fk − ˜fk )/N )

)
2

(11)

Fig. 6 shows an illustration of the normalized error function,

E( ˜fk , ãk )/N for fk = 16, ak = 1 and N = 64. As can be seen,

if the initial estimate
˜fk used for gradient descent is within

a fk ± 2/5, the error function is convex. Hence, we can use

gradient descent to minimize the error and achieve the global

minimum as the solution for
˜fk .

But how do we obtain good initial estimates of fk? To do

so, we leverage the standard OFDM decoder. Specifically, we

have:

fk = k + N∆fc/B (12)

where k is the integer index of the subcarrier on the FFT

grid, ∆fc is the carrier frequency offset (CFO) and B is the

bandwidth of the OFDM symbol. OFDM decoding naturally

estimates the coarse CFO at the beginning of the packet as

well as the residual CFO for every data symbol. We can use

fk -0.4 fk +0.4

fk

Figure 6: Normalized error function for a single subcarrier

at fk = 16, ak = 1 and N = 64.

these CFO estimates to obtain very good initial estimate of

fk on which we can run gradient descent to further minimize

the error.
5
.

Given an initial
˜finit and ãinit , Ghostbuster iterates be-

tween solving for
˜f and solving for ã until the error function

converges. Ghostbuster does this for every OFDM symbol in

order to be able reconstruct and subtract the side-lobes and,

hence, eliminate the artifacts.

3.3 Overall Algorithm
In this section, we put together Ghostbuster’s overall cancel-

lation algorithm. As described earlier, Ghostbuster performs

cancellation both in the spatial and frequency dimensions

using the following steps:

(1) For each packet in the signal, Ghostbuster decodes the

packet using standard OFDM decoding to obtain initial

estimates of
˜f from carrier frequency offset estimation.

(2) For each symbol, Ghostbuster iterates between solving

weighted least squares and gradient descent to solve the

following optimization problem.

˜f∗, ã∗ = argmin

˜fk , ãk

N−1∑
t=0

�����x(t) − N−1∑
k=0

ãke
j2π ˜fk t/N

�����2 (13)

(3) Ghostbuster then uses the estimates
˜f∗ and ã∗ to recover

an accurate reconstruction x̃(t) of x(t). Ghostbuster does
this for each MIMO receiver and then subtracts all the

subcarriers of x̃(t) other than the DC subcarrier from

x(t) to eliminate sidelobes that create artifacts.

(4) Ghostbuster then uses the MIMO receivers to null the

remaining transmitter’s signal in the DC bin and its side-

lobes from the packet as described in section 3.1.

5
Note that simply using these initial estimates as the true estimates results

in a small residual error that accumulates across symbols and continues to

prevent us from accurately detecting the eavesdropper’s leakage.



(5) Finally, Ghostbuster combines the samples from all the

nulled packets and takes a very large FFT across all sam-

ples.

(6) At this point, the transmitter’s signal including the arti-

facts are completely nulled and the eavesdropper’s leak-

age is revealed.

A pseudocode of this algorithm is shown in Alg. 1.

Algorithm 1 Ghostbuster’s Cancellation Algorithm

1: for kth packet do
2: formth

MIMO Receiver do
3: Decode packet using standard OFDM decoder.

4: for Each OFDM Symbol do
5:

˜f (0) ← CFO coarse & fine estimates

6: i ← 1

7: while E(˜f (i−1), ã(i−1)) ≥ Threshold do
8: ã(i) ←WeightedLeastSq(˜f (i−1),xm(t))
9:

˜f (i) ← GradientDescent(ã(i),xm(t))
10: i ← i + 1
11: end while
12: x̃m(t) ← ã∗, ˜f∗ (other than the DC bin)

13: rm(t) ← xm(t) − x̃m(t)
14: end for
15: pm(t) ← combination of rm(t) from all symbols

16: Pm(f ) ← FFT (pm(t))
17: Hm(fDC ) ← Pm(fDC )
18: end for
19: sk (t) ← spatial cancellation using each Hm(fDC )
20: end for
21: s(t) ← combination of sk (t) from all packets

22: S(f ) ← FFT (s(t))
23: Find spike of eavesdropper’s RF leakage.

For the above algorithm to work in practice, Ghostbuster

must address two issues in order to efficiently estimate and

cancel the artifacts.

(1) Sampling & Packet Detection Offset: In order to per-

form the above optimization and reconstruct the artifacts

that result from discontinuities, Ghostbuster must be able

to detect the exact start of the packet and estimate and com-

pensate for any sampling offsets. To do this, Ghostbuster

leverages the fact that a packet detection and sampling off-

set ∆t manifests as a linear phase versus frequency in the

frequency domain. Formally,

x(t − ∆t) =
N−1∑
k=0

ake
j2π fk (t−∆t )/N

(14)

Thus, we can write the phase in frequency as:

ϕ = 2π fk∆t/N (15)

By performing linear regression on the phase versus the fre-

quency, Ghostbuster can accurately estimate and compensate

for sampling offsets.

(2) Cyclic Prefix: The above optimization was described in

the context of N samples of the OFDM symbol. However, for

each OFDM symbol, the transmitter appends a cyclic prefix

which is a simple repetition of CP samples of the symbol in

time domain. Ghostbuster must model the artifacts while

taking the cyclic prefix into account.

One option is to run the optimization problem over all the

samples including the cyclic prefix. Unfortunately, the cyclic

prefix is typically large. For example, inWiFi, the cyclic prefix

could be as large as 1/4 of the symbol length. Running the

optimization problem onN +CP samples significantly breaks

the orthogonality of the subcarriers rendering our initial

estimates of fk outside the convex region which yields poor

results. Another option is to run the optimization problem

only over the N samples and use the result to reconstruct

the cyclic prefix. However, this too yields poor results since

the error increases with more samples outside the N symbol

samples on which we ran the optimization.

To address this, Ghostbuster splits the symbol into two

overlapping regions of lengthN . The first takes samples from

[0, 1, · · · ,N − 1]. The second takes samples from [CP ,CP +
1, · · · ,CP + N − 1]. Ghostbuster runs the optimization al-

gorithm on both regions and then combines the results by

using the second region to estimate and compensate for the

CP samples.

3.4 Detecting Eavesdroppers in the
Presence of Other Receivers

So far, we have focused on the case where there is a single

transmission and RF leakage only from the eavesdropper.

However, in practice multiple legitimate receivers might

be present and listening on the wireless medium. These re-

ceivers will also leak RF signals from their local oscillators.

Ghostbuster can separate these leakages from the leakage

of the eavesdropper along the frequency dimension. Lever-

aging the fact that different receivers have different CFOs

due to hardware imperfections, Ghostbuster can separate

the leakage from different receivers by taking a very large

FFT over a long time window.

Ghostbuster can use time windows of 1 seconds to tens

of seconds, to separate leakage from different receivers as

long as the CFO between them is larger than tens of Hz.

Typical values of CFO in practice, however, are 100s of Hz

to few kHz. Hence, Ghostbuster can easily separate the leak-

age from multiple receivers as we will show in our results.

Ghostbuster can then count the number of receivers in the

environment and check against the expected number of le-

gitimate receivers to detect the presence of an eavesdropper.
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Figure 7: SNR in dB versus Ghostbuster’s distance from a

Wifi card eavesdropper with FFT window size of 1 sec.

Note, however, that this requires knowing the number of

legitimate receivers a priori which is a current limitation of

Ghostbuster as discussed in section 6.

4 IMPLEMENTATION
We implemented Ghostbuster using USRP N210 software

defined radios and evaluated in an indoor office environment

with standard multipath. We experimented with two types

of eavesdroppers:

• USRP Software Defined Radio: We use USRP N210 as

eavesdropper and we ran experiments in the 900MHz ISM

band to minimize interference and more easily collect

benchmark results of Ghostbuster’s performance. We also

ran experiments at 1.8 GHz and 5.745 GHz.

• WiFi Cards:We use WiFi Cards on MacBook Pro laptops.

The cards are placed in monitor mode and are set to the

5.745 GHz WiFi band. We chose this band since it was

unused in our office building.

In each experiment, we place one USRP as transmitter.

The USRP transmits standard WiFi packets with OFDMmod-

ulation. We vary the location of the eavesdropper between

few cms to 14 meters. We ran the experiments in a total of

500 locations for USRP eavesdroppers and 430 locations for

WiFi Card eavesdroppers. In each location, we collected 1

second long measurements. We also varied the number of

receivers that are listening on these transmissions and leak

RF signals from their oscillators.

5 EVALUATION RESULTS
In order to provide some insights into Ghostbuster’s per-

formance, we first provide some microbenchmark results

and then evaluate the overall performance. We start by ex-

amining the case when there are no other transmitters or
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Figure 8: SNR in dB versus Ghostbuster’s distance from a

USRP eavesdropper with FFT window size of 10 ms.

receivers and evaluate how well Ghostbuster can detect the

leakage of the eavesdropper. We then move to the case when

there is a single transmitter continuously sending OFDM

packets. Finally, we evaluate Ghostbuster in the presence of

transmissions as well as multiple receivers.

To evaluate the performance of Ghostbuster, we use the

following metrics:

• False Negative Rate: Ratio of the number of runs where

Ghostbuster failed to detect the presence of an eavesdrop-

per to the total number of runs where the eavesdropper

was present.

• False Positive Rate: Ratio of the number of runs where

Ghostbuster falsely detected the presence of an eavesdrop-

per to the total number of runs where eavesdropper was

not present.

• Hit Rate: Ratio of the number of runs where Ghostbuster

correctly detects the presence of an eavesdropper to the

total number of runs where eavesdropper was present.

• Detection Accuracy: Ratio of number of runs where Ghost-

buster correctly classified the presence of an eavesdropper

to the total number of runs.

• Count of Receivers: Counting the correct number of re-

ceivers in range.

• Leakage SNR: Signal-to-Noise ratio of the RF leakage per
FFT frequency bin.

5.1 Eavesdropper’s RF Leakage
In this part, we evaluate what happens in the absence of

other transmitters and receivers. We start by examining the

variation of the SNR of RF leakage versus distance.

We use one MacBook Pro laptop as an eavesdropper and a

USRP as a Ghostbuster receiver. We placed the eavesdropper

at a total of 105 different locations at distances varying from 1

m to 7 m. We collect samples over a window of 1 sec and take
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versus FFT window size when the eavesdropper is placed 1

m away from Ghostbuster.

an FFT over all the samples. We repeat the same experiment

with a USRP eavesdropper set to listen at 5.745 GHz. We

place it at a total of 210 locations at distances ranging from

1m to 14m and use an FFT window on 10 ms. Fig.7 and Fig.8

show the variation of the leakage SNR versus distance for the

two cases. As expected the SNR decreases with distance but

even at 14 meters, the leakage SNR from the USRP is around

10 dB and can be accurately detected. Similarly, the leakage

SNR from the WiFi card is around 16 dB at a distance of 7m.

However, WiFi cards require a much longer FFT window of

1 sec to achieve such SNR. Note that due to multipath, the

SNR in different locations at the same distance can vary by

as much as 18 dB.

Next we wish to examine how small of an FFT window we

can use while accurately detecting the presence of the eaves-

dropper. For, this we did experiments with a MacBook Pro

laptop and a USRP at 1 m and 5 m away from Ghostbuster.

We collected measurements at 30 locations for both. We start

from a small FFT window of length 10 µs and increase it till

1 s. We classify an eavesdropper to be present if the SNR per

FFT bin is more than 6 dB. Using this threshold, we com-

puted Ghostbuster’s hit rate in detecting the eavesdropper

versus the FFT window size at 1 m as shown in Fig. 9 and 5

m as shown in Fig. 10. The results show that performance

of eavesdropper detection improves for both USRP and Mac-

Book as the FFT window is increased, and can reach 100% as

the window length reaches 100 ms at a distance of 1 m and 1

sec at a distance of 5 m.

5.2 Detection in the Presence of Ongoing
Transmissions

In this part, we evaluate what happens in the presence of

ongoing transmissions. We vary the number of MIMO re-

ceivers on Ghostbuster between 2, 3 and 4. We conducted
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versus FFT window size when the eavesdropper is placed 5

m away from Ghostbuster.

experiments by placing the eavesdropper at 350 different

locations at distances varying from 1m to 5m from Ghost-

buster. We run Ghostbuster’s algorithm over an FFT window

of 5 ms. We compute the false positives and false negative

rates in 4 cases:

• No MIMO: Ghostbuster has a single receiver.

• 2 MIMO receivers at Ghostbuster.

• 3 MIMO receivers at Ghostbuster.

• 4 MIMO receivers at Ghostbuster.

Fig. 11 shows the cumulative distributions of false positive

and false negative rates obtained for the 4 cases. As expected

in the absence of MIMO, it is hard to separate the eavesdrop-

per’s leakage from the transmitter’s signal especially in the

DC bin and hence the false negative and false positive rates

are roughly 50% which is no better than a random guess as

to whether the eavesdropper is there or not. Just by using 2

MIMO already, the results improve a lot with median false

positives of zero and median false negatives of 10%. As we

add more MIMO chains, the median false negative rate goes

down to zero for 3 MIMO and 4 MIMO.

An interesting observation, however, arises by looking

at the 90th percentile. The 95th percentile false negative

rate is 70%, 20% and 10% for 2 MIMO, 3 MIMO and 4 MIMO

respectively. The 95th percentile false positive rate is 0%,

0.1% and 3% for 2 MIMO, 3 MIMO and 4 MIMO respectively.

This can be a bit counter intuitive.

Adding more MIMO chains does reduce the false nega-

tive rate since it provides better separation in the higher

dimensional antenna space. By projecting onto a space or-

thogonal to the transmitter’s signal, the transmitter’s signal

is nulled and the eavesdropper’s leakage is revealed. With

larger MIMO, the extra dimensions in the orthogonal space

amplify the leakage and the probability of missing the pres-

ence of an eavesdropper (i.e. false negatives) decreases. On
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the other hand, in the absence of an eavesdropper, errors in

channel estimation would cause an imperfect nulling of the

transmitter’s signal and a residual error in the orthogonal

space. With larger MIMO, the extra dimensions in the or-

thogonal space would also amplify this residual error and

hence the false positives would increase.

Luckily, our results in Fig. 11 show that the increase in

false positives is tolerable and the gains in decreasing false

negatives that come from using larger MIMO are much more

significant. This can be better understood by examining the

Receiver Operating Characteristic (ROC) curve which shows

the variation in true positive rate (1- false negative rate) ver-

sus the false positive rate aswe sweep the detection threshold.

Fig. 12 shows the ROC curve for the same experiment. We

have zoomed the ROC curve to better visualize the result.

As can be seen, larger MIMO provides a better ROC curve

with higher true positive rate and lower false positive rate.

This shows that the rate at which MIMO helps improve the

eavesdropper’s leakage is much higher than the rate at which

it increases the residual error from nulling.
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Figure 13: Confusion matrix of classification probabilities

obtained on experiments on USRP receivers in the range 1

m to 5 m.

5.3 Detection in the Presence of Other
Receivers and Ongoing Transmissions

So far we have discussed recovering the leakage of an eaves-

dropper in the presence of ongoing transmissions. In this

section, we focus on the scenario when other receivers are

present. Our goal is to estimate the correct number of re-

ceivers in order to be able to identify whether an eavesdrop-

per is there or not.

In our experiments, we took 4 USRP N210 radios, one of

them being an eavesdropper and the other three being le-

gitimate receivers. The radios were placed at 200 different

locations with distances varying from 1 m to 5 m from Ghost-

buster. In each location, we ran Ghostbuster’s algorithm over

an FFT window of 750 ms using a 2 MIMO receiver.

Fig. 13 shows the confusion matrix of overall classification

probability of detecting i given the presence of j receivers for
distances varying from 1 to 5m. The figure shows that the



95.05% 3.96% 0.99% 0%

7.07% 91.92% 1.01% 0%

3.36 5.37% 89.26% 2.01%

0 1 2 ≥3
Estimated Number of Receivers

2

0

1

Ac
tu

al
 N

um
be

r 
of

 R
ec

ei
ve

rs

Figure 14: Confusion matrix of classification probabilities

obtained on experiments on WiFi cards.

classification accuracy is above 95% for 0, 1, and 2 receivers

and remains above 89% for 4 receivers.

We repeat the above experiment for WiFi Cards. The lap-

tops are placed 1 m away from Ghostbuster and an FFT

window of 1.25 s is used with a 2 MIMO receiver. We vary

the number of cards between 0, 1, and 2. Fig. 14 represents

the confusion matrix for WiFi cards. For 1 card, the accuracy

of detection is about 92% and drops to 89% for 2 cards. This

is expected since as we have seen, the leakage from WiFi

card is much smaller. This result can potentially be improved

by adding more MIMO chains and increasing the FFT win-

dow. However, this would require handling an even larger

computational load.

Finally, we examine the overall accuracy for detecting an

eavesdropper using a COTSWiFi card. We ran an experiment

with one transmitter, one legitimate receiver using a Mac-

Book laptop and one eavesdropper using another MacBook

laptop. We vary the size of the FFT window and compute the

detection accuracy which incorporates both false positives

and false negatives. Fig. 15 shows the detection accuracy

versus the window size. As can be seen, as we increase the

window size the accuracy increases, and for a window size

of 1.25 sec, Ghostbuster can achieve a detection accuracy of

94%.

6 LIMITATIONS AND DISCUSSION
Ghostbuster takes the first steps towards detecting the pres-

ence of passive eavesdroppers. However, there are several

limitations that require further future work before such sys-

tem can be used in practice.

• Identifying theEavesdropper’s Leakage:A current lim-

itation of Ghostbuster is its inability to distinguish the leak-

age of a legitimate receiver from the leakage of an eaves-

dropper. Hence, to be able to detect the presence of an eaves-

dropper, our current threat model assumes that Ghostbuster

knows the number of legitimate receivers in the environ-

ment. By counting the number of receivers, Ghostbuster can
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Figure 15: Detection Accuracy achieved for WiFi cards vs

changing FFT window length.

detect the presence of an eavesdropper. While this is a strong

assumption, we do believe the current system can still be

useful for certain highly secured facilities where the number

of receivers is known a priori and the mere presence of an

additional receiver would trigger an alarm.

To address this limitation in future work, one can poten-

tially leverage the fact that legitimate receivers constantly

transition between transmitting and receiving signals. An

eavesdropper, on the other hand, is passive and does not

transmit packets to avoid being detected. By correlating the

receivers’ leakage with the transmitters’ leakage in the DC

OFDM bin, one can potentially discover which receivers

never transmit and identify them as the eavesdroppers. This

idea, however, requires significant research and is left for

future work.

• Detection Range: Ghostbuster’s current detection range

in the presence of ongoing transmissions is limited to 5 me-

ters for software defined radios and 1 meter for COTS WiFi

cards. This is significantly lower than the current range of

WiFi transmissions. One solution is to deploy several Ghost-

buster receivers in the environment to ensure coverage. Al-

ternatively, for certain applications, one can potentially de-

crease the transmit power to ensure that the detection range

and transmission range are similar and detection is possible

within the transmission range.

The detection range, however, can be increased by taking

larger time windows as we have shown in section 5. In our

experiments, the maximum time window used is 1.25 sec

due to our hardware constraints. While increasing the time

window would have improved the range, it comes at the cost

of high computational complexity as we discuss next.

•ComputationalOverhead:Ghostbuster’s algorithmmust

process samples from a very large time window. The larger



the time window, the higher is the detection accuracy but

this comes at the cost of higher computational overhead. In

our current implementation, we can process time windows

up to 1.25 sec with 25 million samples on an Intel i7 machine

with 16 GB memory in 30 secs. The main two sources of com-

putational complexity are the gradient descent optimization

and the computation of a several million-point FFT. Luckily,

both are highly parallelizable. A more efficient implementa-

tion can potentially reduce the processing time. However,

the trade-off between detection accuracy and computational

overhead will remain.

• Packet Collisions and MIMO Transmitters: Our cur-
rent evaluation assumes that the received transmissions

come from a single antenna transmitter and have not ex-

perienced collisions. Some WiFi devices, however, do use

MIMO and their packets can experience collisions. To address

such cases, Ghostbuster must use more MIMO antennas to

separate the signals in the spatial domain. Specifically, an

n-antenna MIMO receiver can decode n signals in parallel.

Hence, for k antenna transmitter or a collision of k packets,

Ghostbuster needs k + 1 antennas to be able to project on a

space orthogonal to all transmissions in order to null them

and reveal the eavesdropper.
6

7 RELATEDWORK
A. Eavesdropper Detection:

Detecting eavesdroppers has been studied in the literature.

These studies, however, have been largely analytical. The

closest to our work is a theoretical work on detecting eaves-

droppers from RF leakage [16]. This work, however, requires

all RF devices in the vicinity to periodically pause commu-

nication so they can sense a “clear” channel, and thereby

listen for the leakages from passive eavesdroppers. Unfor-

tunately, this is not practical in real settings, since other

wireless transmitters and receivers in the vicinity may not

turn off. Ghostbuster, in contrast, can detect eavesdroppers

in the presence of other transmissions without requiring

any modifications to the transmitters. Ghostbuster is also

implemented and empirically tested.

In [25], the authors propose a method for detecting eaves-

droppers in the context of near-field inductively-coupled

communication e.g. RFID based smart cards. Specifically,

the inductive coupling channel can be computed using the

relative-geometry and the properties of the transmitter and

receiver. An eavesdropper in the vicinity would also couple

6
In certain cases of packet collisions, the packet preambles might overlap

and prevent us from properly estimating the channels of the transmitters.

In such cases, we would need to rely on statistical techniques like PCA or

ICA to separate the transmissions.

with the transmitter and receiver and hence change the chan-

nel. The change in channel can be used as an indicator of

the eavesdropper’s presence. Unfortunately, in our context

the communication is far-field and thus the presence of an

eavesdropper does not change the wireless channel between

the transmitter and the receiver.

B. Radio Detection:
RF leakage has also been studied in the context of cognitive

radio networks. Cognitive radios need to detect the presence

of “primary” devices; such detection can be valuable for

the “secondary” device to back out and avoid interfering

with “primary” devices. A body of work in this domain have

proposed theoretical analysis [18, 27] on the achievable SNR

of leakage signals and detection range. In [17], the authors

propose similar results in the context of WiMAX and UWB

co-existence. [27] demonstrates the feasibility of detecting

the leakage by connecting the output of a TV tuner to a light

diode configured to detect the desired frequency. [15] also

shows the possibility of detecting leakage from USRP B210

up to 50 cm. All the above work, however, assumes a single

“primary” receiver and no transmissions making the problem

relatively easy. The presence of transmissions would negate

the need for detecting RF leakage since in the context of

cognitive radios, if the channel is not idle, a “secondary”

device must switch to a different channel. The core problem

formulation in Ghostbuster, on the other hand, is adversarial.

Hence, Ghostbuster, must continue to detect RF leakage in

the presence of ongoing transmissions.

TV detector vans have been used by the BBC channel

in the UK to identify users who are not paying the license

fees but still tune their TV to the BBC channel. It has been

speculated that this is done by detecting the RF leakage

from the TV tuner. However, BBC refuses to disclose any

information on how the vans work. Furthermore, recent

discoveries suggest that this is simply a PR stunt and there

is no evidence that these detectors actually work [1–3]. In

fact, the detectors have never been used to prosecute any of

the people who did not pay the license fees [1].

A body of work aims to detect the presence of radio re-

ceivers in the context of remotely triggered explosives [19–

23]. The work proposes actively transmitting a known stim-

ulation signal that triggers the receiver circuit to reflect un-

intended electromagnetic transmissions. By using FMCW

radar signals as the stimulus, [21, 22] can further range the

receiver’s location. However, all this work assumes a super-

heterodyne or a super-regenerative receiver architecture

which are far less common in WiFi cards as can be seen

in Table 1. The work has been experimentally tested only

for frequencies < 500MHz where signals can propagate for

farther distances. Furthermore, transmitting the stimulation

signals requires halting ongoing communication to avoid



interference. On the other hand, Ghostbuster leverages an

orthogonal passive approach that focuses on WiFi communi-

cation and does not require transmitting a stimulation signal.

Ghostbuster has also been demonstrated to work for direct

conversion receiver architectures, in the presence of ongoing

transmissions and for frequencies up to 5.7 GHz.

RF and EM leakage has also been used to launch side-

channel attacks. In [4, 7], the authors detected low frequency

EM leakage from smart-cards and ultimately demonstrate

that cryptographic keys can be completely deciphered from

this leakage. The work [6, 28] also shows that EM leakage

from powerful computers can reveal the programs running

on them.

C. Leakage Suppression:
Finally, we are aware of arguments that suggest that leak-

ages can be suppressed, either through modifications in

the circuit design, or via physical packaging and shielding

[11, 12, 14]. However, the commercial off the shelf (COTS)

wireless devices do not employ leakage cancellation circuits,

neither is there any special shielding to the best of our knowl-

edge. As discussed earlier, we have successfully detected leak-

age from various RF devices across different vendors. This

paper aims at thwarting attacks with such COTS devices.

8 CONCLUSION
This paper takes the first steps towards developing systems

that can detect the hidden presence of eavesdroppers. Our

results show that one can reliably detect the presence of an

eavesdropper up to five meters even in the presence of other

receivers and ongoing transmissions. One can potentially

push these results further with more computational power

that would allow us to compute even larger FFTs. We believe

that such capability can serve as a strong primitive that

provides a defense-in-depth against eavesdropping.
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APPENDIX
A PROOF
Theorem A.1. The error function E( ˜fk , ãk ) is convex for

˜fk ∈ [fk − α , fk + α] for any α < 2/5.

Proof. Recall that the error function E( ˜fk , ãk ) is defined
as:

E( ˜fk , ãk ) =
N−1∑
t=0

���ake j2π fk t/N − ãke j2π ˜fk t/N
���2 (16)

We wish to find the
˜fk and ãk that minimize the error. For

a fixed
˜fk , the ãk that minimizes the error can be obtained

by solving a weighted least squares problem. This is done

by projecting the given samples on the vector of e j2π
˜fk t/N

.

Thus,

ãk = argmin

ãk
E( ˜fk , ãk )

=
1

N

N−1∑
t=0

ake
j2π (fk− ˜fk )t/N

=
ak
N

e j2π (fk−
˜fk ) − 1

e j2π (fk− ˜fk )/N − 1

(17)

Given the above solution for ãk , we now show the error

function is convex in
˜fk . We can expand the error function

as follows:

E( ˜fk , ãk ) =
N−1∑
t=0

���ake j2π fk t/N ���2 + N−1∑
t=0

���ãke j2π ˜fk t/N
���2

−

N−1∑
t=0

ak ã
∗
ke

j2π (fk− ˜fk )t/N −

N−1∑
t=0

a∗k ãke
−j2π (fk− ˜fk )t/N

= N |ak |
2 + N |ãk |

2

− ak ã
∗
k

e j2π (fk−
˜fk ) − 1

e j2π (fk− ˜fk )/N − 1
− a∗k ãk

e−j2π (fk−
˜fk ) − 1

e−j2π (fk− ˜fk )/N − 1

where (∗) is the complex conjugate operator. We can then

replace ãk from equation 17 to get:

E( ˜fk , ãk ) = N |ak |
2 + |ak |

2/N

����� e j2π (fk−
˜fk ) − 1

e j2π (fk− ˜fk )/N − 1

�����2
− 2|ak |

2/N

����� e j2π (fk−
˜fk ) − 1

e j2π (fk− ˜fk )/N − 1

�����2
= |ak |

2N − |ak |
2/N

(
sin(π (fk − ˜fk ))

sin(π (fk − ˜fk )/N )

)
2

Thus, the error function is the negative of the square of

discrete sinc function. Fig. 6 shows an example of the error

function. By taking the second derivative of E( ˜fk , ãk ) with

respect to
˜fk , we can show that ∀N ,

∂2E

∂ ˜f 2k

> 0 ∀ ˜fk ∈ [fk − 0.4, fk + 0.4] . (18)

Hence, the error function E( ˜fk , ãk ) is convex in ˜fk within

the interval [fk − 0.4, fk + 0.4] around fk . It is sufficient

to ensure the initial values of
˜fk are within this interval to

guarantee that the gradient descent converges to the optimal

minimum of the error function. □
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