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THE IOT CONNECTION

Localization has been exten-
sively studied in various 
contexts, both indoor and 
outdoor. Yet, emerging ap-

plications continue to ask for new 
requirements that challenge exist-
ing localization mechanisms. For in-
stance, a team of soccer or basketball 
players might seek their precise po-
sitions during a game—this is valu-
able to coaching and sports analytics 
applications. As another example, a 
swarm of wirelessly connected IoT 
drones carrying chemical probes 
might need to fly in precise forma-
tions to analyze water samples from 
a polluted lake while constantly re-
porting their sensor readings and 
each drone’s relative position in 
the swarm to a central aggregator. 
Similarly, an army troop on the 
ground or a group of first responders 
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FROM THE EDITOR

Precise indoor locations systems are coming of age, and enabling context-aware 
operations will result in a wide range of effective Internet of Things (IoT) applica-
tions.1 However, for many of these systems to operate, they need location refer-
ence points, or some fixed nodes of known location. This article makes the case 
that there are many peer-to-peer location applications that only require the rela-
tive positions of the mobile nodes, and explores the issues that need to be consid-
ered to accurately determine their topology. —Roy Want
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in a disaster-relief effort could benefit 
from the ability to continuously visu-
alize their group’s configuration. How-
ever, GPS might not be adequately pre-
cise or even available on a battlefield, 
and environmental infrastructure 
might not be available, for example, on 
a basketball court. 

As a solution, P2PLoc (peer-to-peer 
localization) envisions wearable IoT 
devices on users’ arms or wrists that 
exchange wireless messages to ulti-
mately compute the relative positions 
of each group member. The outcome 
is a topology or configuration of mo-
bile users that can be tracked in real 
time. We believe this can be a valuable 
primitive to various group-motion 
applications.

Existing localization approaches 
are usually based on creating a large 
database of received signal strength 
from a few fixed access points and 
then matching the measured signal 
strength to report the approximate 
location of the user. However, in the 
sports or army contexts, we might not 
have the liberty to create such a fin-
gerprint of the entire arena. Instead, 
we propose to use the time wireless 
signals take to travel between two de-
vices as a measure of the distance be-
tween them. The precision of this time 
measurement directly correlates with 
the bandwidth of the wireless signal 
used. Therefore, we use ultra-wideband 
(UWB) radios with a 1 GHz bandwidth. 
When used with a packet-handshake 
protocol called two-way ranging (TWR), 
today’s UWB platforms can estimate 
the distance between two devices with 
about 10 cm precision without clock 
synchronization.

A group of players or military per-
sonnel can be abstracted as a net-
work topology (see Figure 1), with 
each node representing an individual 
and the edges representing the dis-
tance between them. Given n nodes, 
TWR performed between every pair 

generates the distance of each edge in 
the network. These distances naturally 
over-determine the system, producing 
the relative topology graph (relative be-
cause the produced topology could be a 
rotated version of the true topology) of 
all the participating devices. Our goal 
is to localize dynamic nodes whose 
locations change over time. Tracking 
mobile nodes requires fast collection 
time to prevent measurements from 
becoming too stale. Collecting each 
pairwise distance is not possible be-
cause each TWR handshake consumes 
time and there are O(n2) pairwise dis-
tances to be measured, scaling poorly 
as the number of devices, n, grows. Of 
course, instead of over-determining 
the system through n2 measurements, 
we can still solve the topology with 3n2  
pairwise measurements. This would 
significantly reduce the total localiza-
tion time. Thus, the essential question 
for this approach comes down to which 
O(n) pairwise distance measurements 
will result in fast and accurate track-
ing of the topology.

There are three main factors to con-
sider when choosing the pairs:

›› the total number of wireless 
message exchanges while exe-
cuting the TWR protocol;

›› the geometric dilution of pre-
cision, which changes with the 
topology; and

›› occlusions caused by humans 
that makes some links unusable. 

TWR PROTOCOL 
OPTIMIZATIONS
Figure 2a shows the original TWR 
protocol. It is simply a ping-pong of 
messages with precisely measured 
timings at both participating devices. 
It is comprised of three time-stamped 
messages exchanged between a device 
pair—an initiator and a responder. 
We obtain the time of flight by aver-
aging the difference between the two 

round-trip times and the two turn-
around times. For a group of devices, 
one would require all three messages to 
be exchanged between each selected 
device pair. This would mean 3 · d mes-
sages need to be exchanged to obtain 
d distance measurements (see Figure 
2b). Also, we need at least three dis-
tance measurements for every node 
to uniquely solve a topology. By care-
fully picking the edges, it is possible 
to obtain a solution in ⌈ 3n2 ⌉ distance 
measurements for n nodes. Figure 2b 
shows one such careful choice.

The original TWR protocol is de-
signed for one-to-one distance mea-
surement. However, the broadcast 
nature of wireless channels permits 
one-to-many operations, providing an 
opportunity to reduce the total number 
of messages exchanged. As shown in 
Figure 2, the initiator’s POLL message 
can be heard by all other nodes. They 
can then take turns to send the RESP 
message back to the initiator. A single 
FINAL message then suffices for all the 
responders to calculate their distance 
from the initiator. A further optimi-
zation is possible where all initiators 
take turns to send their POLL mes-
sages, and the responders take turns 

Distance measurement

Player

Figure 1. A group of players abstracted 
as a graph. Nodes represent the players 
and edges denote each distance mea-
surement performed.
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to send only one RESP message each. 
This is followed by the initiators send-
ing FINAL messages. Just three initia-
tors are required to solve the topology. 
This optimized ranging protocol and 
the resultant set of distance measure-
ments are shown in Figure 2c and 2d, 
respectively. While this protocol is 
suboptimal in the number of distances 
measured, it is optimal in the number 
of wireless messages exchanged. Ul-
timately, minimizing the message ex-
changes speeds up localization.

DILUTION OF PRECISION
The optimized TWR protocol provides 
an upper bound on the system update 

rate for n nodes. However, it makes no 
claims about the accuracy obtained 
through a particular choice of three 
initiator nodes. If all distance mea-
surements were precise, this choice 
would not matter. However, if dis-
tance measurements have even small 
errors, such as those introduced by 
hardware noise, then the localiza-
tion accuracy can be severely affected 
by the choice of initiator nodes. The 
dark overlapping area in Figure 3 
shows the region of confusion—node 
T could be anywhere within this re-
gion. Observe how the geometry of 
the initiators (labeled A1, A2, and A3) 
affects this dark region.

This problem, called geometric di-
lution of precision (DoP), occurs in GPS 
receivers as well. GPS DoP solutions2,3 
should be applicable in this situation. 
However, there is a key difference in 
the way GPS estimates DoP and what 
would be required in a short-range sys-
tem like ours. GPS only uses the angles 
between vectors formed by the initi-
ator positions but ignores the mag-
nitude. While this works reasonably 
well for GPS (because of the very large 
distance between Earth and the satel-
lites), ignoring the magnitude can lead 
to poor choices in short-range systems. 
Instead, we calculate the estimated lo-
calization error directly and select the 
best initiators.

HUMAN OCCLUSIONS
Accurate distance measurements de-
pend on the wireless device’s ability to 
identify the direct line of sight (LOS) 
path between two nodes. This can be-
come challenging due to body block-
ing when the device is worn by hu-
mans. Non-line-of-sight (NLOS) paths 
can then be misinterpreted as being 
the first path, causing large-ranging 
errors. Figure 4 demonstrates the 
impact of body blocking with a set 
of nodes (blue squares) arranged in a 
semicircle around a person wearing 
a UWB device on his or her arm. Dis-
tance estimates for devices blocked 
by the person’s body are significantly 
scattered and erroneous (red streaks), 
while those obtained by non-occluded 
devices are more precise (green dots). 
Using distance estimates from oc-
cluded nodes to solve for the topology 
can cause severe localization errors. In 
a fast-moving topology, human occlu-
sions are common and a scheme that 
does not cater to such situations will 
fail miserably. Thus, even if DoP con-
siderations indicate a set of initiators 
to be optimal, occlusions might render 
that choice infeasible. 

Determining occlusion based on 
link quality between every node pair 
is time-consuming. Fortunately, be-
cause every device can overhear all 
ongoing communication, a device can 
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Figure 2. (a) The original two-way ranging (TWR) protocol. Each distance measure-
ment needs three messages. (b) For triangulation, each node must have at least three 
edges. (c) Our modified TWR protocol to minimize the number of wireless messages 
exchanged in a group of nodes. (d) Only three nodes initiate TWR—a minimal number of 
messages exchanged ensures faster overall protocol time.



	  O C T O B E R  2 0 1 8 � 97

deduce its link quality with all other 
devices just by listening to the chan-
nel without incurring time costs. Each 
device independently deduces occlu-
sions and produces an exclusion list, 
which is updated at every round of the 
pipelined TWR protocol.

EVALUATION PLATFORM 
AND RESULTS
We invited 10 volunteers to wear UWB 
arm bands while playing basketball. 
The volunteers took specific positions 
on a basketball court, creating a to-
pology. Each UWB node (https://www 
.decawave.com/products/evk1000 
-evaluation-kit), shown in Figure 5, ran 
our modified TWR protocol and chose 
a set of appropriate initiator nodes 
based on DoP and occlusions. The vol-
unteers moved into 22 different topol-
ogies, mimicking important positions 
in a basketball game. Overall, the 75th 
percentile localization accuracy for 
all the volunteers across all topologies 
was around 0.8 m. Of course, some to-
pologies provided poor occlusion-free 
choices, causing a relatively long tail. 
In a real game, we expect such cases 
to be few and short-lived. To measure 
the impact of occlusions alone, we 
repeated the game by mounting the 
UWB nodes on tripods. The resulting 
localization error stayed under 0.2 m, 
showing the significant impact of hu-
man occlusions.

IMPLEMENTATION IN IOT 
DEVICES
We have discussed specific optimi-
zations and pitfalls in implementing 
a peer-to-peer relative localization 
scheme in the context of sports and 
other group activities. Whereas we 
used UWB devices for performing 
the distance measurements, the fun-
damentals discussed here remain 
applicable for any ranging technol-
ogy. Recent advancements in the 
IEEE 802.11-REVmc protocol 4 allow 
for wireless time-of-flight measure-
ments on commodity WiFi devices 
and access points, which can easily be 
adapted to perform the peer-to-peer 

measurements envisioned in this arti-
cle. IoT devices that support this tech-
nology can be built today. P2PLoc can 

thus transform ad hoc playgrounds into 
sports-analytics arenas without relying 
on expensive tracking technology.
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Figure 3. The node’s location can be estimated to be anywhere in the region of confu-
sion. The shape and area of this region depends on both the magnitude and the angle 
of radius vectors formed by the initiators.
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Figure 4. Effect of human occlusions on estimated distance. Ultra-wideband (UWB) 
devices that are blocked by a person’s body obtain erroneous distance estimates.
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The proliferation of IoT devices 
in everyday sensing and ana-
lytics is pushing the envelope 

for location tracking. P2P location 
tracking is well suited for many of 
these applications due to its low en-
ergy footprint and extreme robustness 
under any environmental condition. 
Despite the challenges of peer-to-peer 
location tracking, from our results, we 
see the potential in the feasibility and 
vast utility of such a primitive. P2PLoc 
is only a first step in this direction, 

enabling accurate and fast tracking of 
a team of devices in the absence of ex-
ternal infrastructure. 
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Figure 6. Overall localization error remains under 1 m for most cases, even with 
human occlusions. Without human occlusions, localization error is under 20 cm.  
CDF: cumulative distribution function.

ASHUTOSH DHEKNE is a PhD 

student at the University of Illinois at 

Urbana-Champaign. Contact him at 

dhekne2@illinois.edu.

UMBERTO J. RAVAIOLI is an analyst 

at Toyon Research Corporation. 

Contact him at um.ravaioli@gmail 

.com. 

ROMIT ROY CHOUDHURY is a pro-

fessor and Jerry Sanders III Scholar 

at University of Illinois at Urbana-

Champaign. Contact him at croy@

illinois.edu.

UWB antenna

Armband

UWB device

Power source

Figure 5. A wearable arm band carrying a UWB device.
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