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Abstract—This paper explores the possibility of injecting mobility into wireless network infrastructure. We envision WiFi APs on wheels
that move to optimize user performance. Movements need not be all around the floor, neither do they have to operate on batteries. As a
first step, WiFi APs at home could remain tethered to power and Ethernet outlets while moving in small areas (perhaps under the
couch). If such systems prove successful, perhaps future buildings could offer explicit support for network infrastructure mobility. This
paper begins with a higher level discussion of robotic wireless networks — the opportunities and the hurdles — and then pivots by
developing a smaller slice of the vision through a system called iMob. With iMob, a WiFi AP is mounted on a Roomba robot and made
to periodically move within a 222 sqft region. The core questions pertain to finding the best location to move to, such that the SNRs from
its clients are strong, and the interferences from other APs are weak. Our measurements show that the richness of wireless multipath
offers significant opportunities — even within a 222 sqft region, locations exist that are 1.7z better than the average location in terms of
throughput. When multiple APs in a neighborhood coordinate, the gains can be even higher. In sum, although infrastructure mobility
has been discussed in the context of Google Balloons, ad hoc networks, and delay tolerant networks, we believe that the possibility of
moving our personal devices in homes and offices is relatively unexplored, and could open doors to new kinds of innovation.
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1 MOTIVATION AND VISION

HE last 30 years have witnessed significant advance-

ments in wireless networking, ranging from hardware
improvements to breakthroughs in theory, algorithms, and
protocols. In the recent years, however, there is growing
agreement in the research community that gains from the
lower layers (MAC and PHY) are saturating. Many are
beginning to believe that the next “jump” in network perfor-
mance will emerge from new ways of organizing networks
[1]-[5]. In considering new network organizations, we ex-
plore the possibility of merging wireless networking with
robotics. Specifically, we ask: what if network infrastructure
of the future — WiFi APs, enterprise WLANs, cell towers —
are empowered with the ability to move physically? In pursuit
of this thought, we began surveying the current state of
robotics, as well as the pros and cons of physically moving
infrastructure (e.g., WiFi APs on wheels, or cell towers on
drones). We make a few observations below.

(1) Infrastructure mobility may not be viewed as a one-
size-fits-all solution, rather as a spectrum of opportunities
illustrated in Fig. 1, ranging from centimeter scale antenna
mobility to exploit multipath propagation [6], to feet scale
tethered mobility to evade wireless shadows and interfer-
ences, to full scale macro-mobility that minimizes distance
to clients. Network designers can choose to operate at dif-
ferent points on this spectrum, depending on user’s require-
ments, budget, applications, and psychological comfort.

(2) Mobility is expected to bring a new degree of freedom
(DoF) to network design, but more importantly, this DoF
complements existing dimensions of wireless innovation.
Techniques for power control, channel allocation, localiza-
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tion, topology control, can all benefit if APs have the ability
to move, even in the scale of inches.

(3) The time scale of mobility can be regulated as nec-
essary. Small scale mobility can be used to compensate
for small changes in network conditions, while full scale
mobility can be triggered occasionally, when the system
moves to a skewed state, or a strict QoS requirement is
ordered. In cellular networks, for instance, quad-copters
could occasionally fly out from cell towers and position
themselves strategically to meet users’ demands - like
a network cloudlet [2], [3]. Infrastructure mobility could
evolve as an on-demand service, a cost-effective and scalable
alternative to over-provisioning.

Of course, some basic questions arise.

(1) Is moving infrastructure really practical? Concerns
on feasibility are valid, but could perhaps be alleviated by
building the vision in small systematic steps. Advances in
personal robotics, beginning from the popular Roomba [7]
to the more recent quadcopters [8]-[11] are already main-
stream. Hardware is rapidly becoming cheap and reliable —
an Arduino based robot car chassis adequate for cradling
WiFi APs is $16 today [12]. Based on where robotic tech-
nology stands today [13], it is certainly not the fundamental
barrier to infrastructure mobility.

Questions on the architectural aspects are certainly more
relevant, such as maintaining power/Internet connectivity
to a mobile AP, tangling wires, awkward moving objects
on the floor, etc. However, we do not envision an all-at-
once technology deployment, rather we intend to activate
functionalities incrementally. As a first step in home settings,
a mobile WiFi AP might just remain tethered to power and
Ethernet, and only move in small spatial scales (say, under
the couch or study table). In enterprises, airports, and hotels,
the APs may also be tethered, but they could move in a
coordinated manner (like a joint topology control problem)
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Fig. 1. Regimes of infrastructure mobility, ranging from centimeter scale micro-motions, to feet scale mini-motion under couches, to building scale
macro-motion perhaps on tracks laid on ceilings. Further into the future, perhaps flying quadcopters can serve as cell tower extenders, parking at

strategic locations to meet client needs.

orchestrated by the cloud. Moreover, the AP movements
need not be continuous; the time scales could slowly be-
come more frequent as the system matures and gains social
acceptance. Of course, facilities management and other lo-
gistical /policy questions will arise, but we believe they can
be mitigated if the core performance gains are compelling.

(2) How compelling are the gains? While the answer
obviously depends on numerous factors, the high level
message is that the upper bound can reach 3z and more,
compared to the static case. For example, in home environ-
ments, median throughput from 2 feet of mobility is 2z for
single clients, with the possibility of reaching 4z in 20% of
the cases. With multiple homes, if APs coordinate to avoid
mutual interference and optimize client SNR, median gain
in overall network throughput can be 1.77z or more.

It is crucial to recognize that the performance gains are
not obtained by moving the AP close to one client — with
multiple clients associated to an AP, moving close to one
client will adversely affect others. The gains we observe
actually arise from finding appropriate AP locations from which
the SNRs to all its clients are strong. This is feasible due to rich
spatial diversity in indoor environments, i.e., there exists
certain nearby locations from which many clients experience
strong channel conditions. In fact, the best AP locations
could also experience lower interference from other APs
and clients, enabling greater spatial reuse. On the other
hand, blindly chosen AP locations will fail to leverage these
benefits, resulting in far inferior performance.

iMob demonstrates the ability to improve throughput to
5+ clients simultaneously. If too many more clients are ac-
tive simultaneously, iMob can choose the top-K demanding
clients and optimize their performance without affecting the
others. If no solution is feasible, i.e., no AP location is able
to satisfy the requirements, iMob could reduce the value of
K. In the worst case, iMob will degenerate to a “static” AP
and behave exactly as today’s WiFi technology.

(3 Why move? Why not use MIMO, beamforming,
or other software techniques? While these PHY layer
techniques also leverage spatial diversity, mobility is still
complementary. Micro-shadowing scenarios are highly com-
mon in indoor environments [14], [15] — moving slightly
can appreciably increase the rank of the channel matrix,

resulting in higher MIMO gains. Our measurements confirm
323 MIMO gains with today’s 802.11n interfaces. Further, in-
terference at the MAC layer is a function of energy, implying
that AP1 would need to move out of AP2’s carrier sensing
range to enable spatial reuse. With beamforming/MIMO,
AP1 will still sense AP2 and will defer communication.
However, if AP1 could physically move out of AP2’s range,
or if AP1 and AP2 could jointly move to become “inde-
pendent”, system performance can improve further. Lastly,
mobility and beamforming can be performed jointly to
harness the best of both worlds.

The above is a high level vision (and qualitative argu-
ments) aimed at motivating the overall research direction.
Towards that end, this paper focuses on systematically
characterizing the research landscape in real environments,
and then builds a completely functional robotic AP system
— iMob - using off the shelf 802.11n hardware. The key
technical modules we develop are described next.

2 1IMoB: RoBoTICc WIFI ACCESS POINTS

As a first step of the broad vision, we focus on small scale
mobility in homes, in a way that is minimally disruptive to
the established notions of a WiFi network. The iMob system
we develop will allow WiFi APs to move on wheels while
being tethered to the same power and Ethernet cable, as
is currently used in most homes. Ideally, the APs could be
placed away from human movement, such as underneath
a couch or a side-table, or at the corner of a room!. In this
setting, the iMob system will be tasked to offer performance
gains to client devices. The main technical components we
develop are as follows:

o We begin by measuring the upper bound on performance
gain achievable through feet-length mobility of WiFi APs.
These gains are measured using a testbed of 8 laptops
mounted on Roomba robots — the laptops run 3x3 MIMO
using Intel 5300 802.11n cards. Using one of the devices as
a mobile AP and others as scattered clients, we find the op-
timal AP location from which system performance is max-
imized. Besides serving as an Oracle, these measurements
also offer insights into the nature of the gains, ultimately
guiding the design of a real-time robotic networking system.

1. This is anyway the case in many homes, given that network
devices and wires are typically hidden from eyesight.



o We cross-check these results with USRPs and Atheros cards
and verify that the gains scale across heterogeneous hard-
ware (and not due to any idiosyncrasies of our hardware).

o We then develop a practical iMob system in which the AP
observes channel conditions and moves in real-time to the best esti-
mated location. The motion planning algorithm uses insights
from channel measurements, properties of the robot, and
results from optimal stopping theory, to balance the tradeoff
between exploration and exploitation (i.e., whether the AP
should continue to explore more locations or should stop
and perform remaining transmissions from its current loca-
tion). This tradeoff arises because the channel changes over
space/time, and the AP does not have the Oracle’s view.

o We also build a coordinated iMob system in which the cloud
moves multiple interfering APs (e.g., in neighboring apartments
or houses) to optimize performance. This is essentially a topol-
ogy control problem, with physical mobility as a degree
of freedom. Both signals and the interferences can now be
controlled to optimize desired performance metrics.

o We evaluate single AP iMob in faculty homes, student
apartments, and in our lab. Coordinated iMob is evaluated with
4 APs deployed across 2 floors in our engineering building.
Experiments are designed to evaluate a range of parameters
and scenarios, including throughput and fairness, MIMO
gains, impact of “leash length”, impact of increasing number
of clients, client mobility, etc. The overall gains are promis-
ing, and achievable without accurate prediction of wireless
multipath and spatiotemporal channel variations.

3 MEASUREMENTS

To characterize performance upper bounds with mobility,
we will exhaustively move APs in small spatial granularities
and pick the best location that optimizes a given metric —
we call this the Oracle. We will then focus on understanding
the nature of the gains, and utilize the insights to guide the
design of a practical, real-time robotic WiFi system.

3.1 Experiment Platform and Methodology

Figure 2(a) shows an iMob AP assembled using a Roomba
iRobot 2.1, a webcam, and a laptop equipped with Intel 5300
802.11n cards. The laptop is mounted on the iRobot and
connected to it over the serial interface; it is also connected
to a Microsoft live cam (attached in front of the iRobot)
to guide its motion. The laptop acts as the controller for
the whole system, sending motion commands to the robot
(via the OSI interface), while also controlling the network
interface for transmission/reception. 8 laptop clients were
uniformly scattered at various locations and programmed
to communicate back to the iMob AP.

The robot’s mobility is confined within a 222 feet square
region, demarcated by a colored tape pasted on the floor.
We term this 222 feet square region as a spot. If the robot
drifts out of the spot, the camera detects the color of the
tape and triggers a change in heading direction. These spots
are selected from realistic areas in homes and apartments,
i.e., near cable connection outlets. The AP performs “raster
scans” within the spot (Figure 2(b)) at a speed of 10 cm/sec
— during the scan, the AP continuously sends around 200

Fig. 2. (a) A laptop and a webcam mounted on a Roomba to emulate an
iMob AP. (b) Raster scan in a box while communicating to clients.

packets/second, equivalent to 60 packets per 3cms. Trans-
missions are performed on regular OFDM, 3x3 MIMO at
both 2.4GHz and 5GHz bands. Clients record the per-packet
channel state information (CSI) for offline analysis [16], [17].

The experiments were conducted in 4 different settings:
(1) Office: Student offices; (2) Lab: Various corridors open-
ing into the atrium of the engineering building; (3) Apart-
ment: Single bedroom graduate student apartment; and
(4) Home: Large single family home with APs placed in
different rooms. In all cases, people moved naturally during
experiments, and clients scattered at realistic locations. Total
measurements exceed 100 hours, generating 5TB of data.

Metrics: We evaluate performance in terms of data
rates, throughput, and fairness. While the Oracle selects
the location with the best data rate, our baseline scheme
reflects today’s static systems where the AP is placed at an
arbitrary location near cable connection outlets. In light of
this, the median performance among all locations inside the
spot is treated as the baseline. Note that the gain could
be compared against an intuitively chosen “good” location.
While the AP positions can be optimized at macro-levels, for
a given client positions, the main focus of the paper is the
gain due to micro-mobility. Since mobility is performed at
the granularities of cms, it is impractical to decide optimal
AP locations upfront. Hence, comparing the gain against an
“average” location within the spot with median throughput
would be a fair estimate of micromobility gains. Thus, the
upper bound gain, say for throughput, is defined as:

. maxy; throughput
Gain =

mediany; throughput

where ¢ denotes a location inside the spot. Of course,
when we design the real-time iMob system (later in Section
4), the median gain is not known to the AP since continu-
ous raster scans are impractical. Still, the iMob AP should
park itself at “good” locations from which the performance
exceeds the median. We will discuss these later; for now, we
focus on characterizing the system’s upper bounds.

3.2 Characterizing Upper Bounds: Real WiFi Card

The experiments are designed around 8 questions — the first
4 focussed on the amount of performance gain, and the next
4 on understanding the nature of the gains.

(1) How much Data Rate Gain at Single Client?

Consider a case where the iMob AP moves within a box
while continuously transmitting packets, and 8 scattered
clients record the channel state information (CSI) for every AP
location. The CSI at each client can be accurately translated
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Fig. 3. (a) Maxz minus Median data rates for mobile and static AP, verifying the greater diversity caused due to mobility. (b) Median minus Min
data rates confirms that mobility also induces low data rates. (c) Comparison of the range of data rates for mobile and static APs in 10 randomly
selected boxes (each bar representing Median and error bars representing [Maxz, Min]).

to the achievable data rate for communication between this
client and the AP. For each tuple <Box;, Client;>, we
compute the max, median, and min data rates (to avoid
outliers, we always use the 99" percentile as maz and the
1 percentile as min). Figure 3(a) plots the CDF of max
minus median data rates due to the mobile AP, as well
as the static AP, across all tuples. The key observation is
that AP mobility induces large variations in data rates, far
greater compared to the variations from temporal channel
fluctuations. Figure 3(b) plots the CDF of median minus
main data rates for both mobile and static APs, and shows
that the reduction in data rates are also equally stronger due
to mobility. Figure 3(c) further compares the range of data
rates experienced in the same box by a mobile and static AP
— the error bars represent the max and min (static AP’s 1
percentile is sometimes the same as the median due to low
CSI variations). Clearly, mobility induces diversity.

While these results validate the known intuition that
the wireless multipath signals interfere constructively or
destructively in small spatial scales (causing diversity), it
opens 2 specific opportunities for robotic WiFi applications.

1) With centimeter scale mobility, an AP might appre-
ciably improve data rate to a given client.

2) With centimeter scale mobility, an AP can relocate
to minimize interference from nearby APs/clients
(potentially improving spatial reuse).

Assuming that the iMob AP is able to magically
relocate to the best position, what is the gain possible
compared to a static AP? Figures 4(a) plots the CDF of
“rate gain” plotted from 8 clients across 21 different boxes in
which the AP moved. We compute the rate gain as the ratio
of m’:&fm data rate from each box. Evidently, an Oracle can
easily double the data rate on average, and up to 4z in ~ 20%
cases. Fig. 4(b) plots the CDF of “SNR reduction” (i.e., the
decrease in signal strength of an interfering transmitter) to
reflect how the mobile AP can move to avoid interference
from nearby interferers. SNR reduction is computed as
the difference between median and minimum SNR (note that
interference is a function of energy and not the interferer’s
data rate, and hence plotted in terms of SNR). The achieved
average SNR reduction is about 4.5dB, contributing to a
modest improvement in spatial reuse and throughput. In
summary, the potential gains seem substantial given that
the AP moved within a square box of side 2 feet.

(2) Does Gain Scale to Multiple Clients?

In most realistic settings, the AP must serve multiple clients.
So the natural question is: is there any AP location from which
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Fig. 4. (a) CDF of (maxz/median) data rates in a box indicates gain at
a client. (b) CDF of (median — min) SNR in a box indicates gain from
avoiding interference from nearby APs and clients.

the data rates can be simultaneously improved for all clients?

For this, we sum the data rates of all clients for each AP

location within a given box — let S; denote this sum for

location ¢. Then we compute the average per-client data

rate gain, /3, defined as % As before, the median
Vi (Sz)

represents the performance to be expected when the AP is

placed statically at a random location.

Figure 5 plots the CDF of 3 for increasing number of
clients. The gains are obviously expected to diminish since
the AP must satisfy a stricter condition. Nonetheless, the
gains are still upwards of 1.352 on average even with 7
clients, and up to 1.45x for 3 clients. Homes mostly fall
within this regime, where greater than 3 simultaneously
backlogged connections are rare. In enterprises and hotspots
(e.g., coffee shops), perhaps iMob can serve the 7 most
data-hungry clients or the 7 weakest clients, improving
the overall performance of the entire network. This result
confirms the richness in indoor multipath diversity, offering
support for robotic AP mobility even for multiple clients.
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Fig. 5. CDF of sum(data rate) gain over a static AP, where data rates are
summed over multiple clients.

(3) How much Gain in Throughput?

Figure 6(a) plots the CDF of throughput experienced by each
client due to AP mobility. If an Oracle were to pick the best
AP location, the throughput gain (compared to a location
with median throughput) is shown in Figure 6(b). Aligned
with expectations, the throughput gains are proportional to
the data rate gains, although slightly less due to wastage
from backoff and DIFS/SIFS slots.
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Fig. 6. (a) CDF of client throughput during AP’s mobility. (b) CDF of
(maz/median), i.e., the Oracle’s gain over a randomly placed static AP.
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Fig. 7. Oracle’s median data rate gain in Office, Lab, Apartment, and
Home in entirely uncontrolled settings.

(4) Does the Gain Scale across Environments?

Figure 7 reports the Oracle’s median data rate gains from
each of 4 environments, namely Office, Lab, Apartment, and
Home. The reported gains are computed using the same
metrics as above (i.e., max/median), and the experiments
executed at 4 to 8 different places/rooms in each environ-
ment. The environment was entirely uncontrolled with nat-
ural human and object/furniture movements. The gains due
to micro-mobility are consistent across all environments.

To verify portability across hardware platforms, we per-
formed similar measurements on USRPs and Intel cards.
Figure 8 summarizes the results — this is loose in the sense
that experiment conditions differed and some parameters
were not identical (e.g., packet aggregation, MIMO, etc.)
The key message is that the gains are consistent over Static
(single client), precluding any misgivings on our hardware.

USRP Atheros Cards Intel Cards
(Software Radio) (AR 5418) (5300agn)

Interference 8dB 6dB 4.5dB
Suppression
Throughput 1.7x 2.15x 2x

Fig. 8. Performance comparison across different platforms.

3.3 Understanding the Nature of Gains

While the upper bounds on performance are valuable, the
extent to which the bounds can be achieved is also impor-
tant. The next 4 questions are focussed on achievability.

(5) How Many High Gain Locations?

The existence of high gain locations is a necessary but not
sufficient condition — if such locations are rare, the AP would
have to spend a large time searching for it, affecting perfor-
mance. Now, instead of targeting only the maxDataRate
locations, we define high gain locations as those that achieve
greater than 0.95 times the maximum data rate in that box.
Figure 9(a) plots the CDF of the fraction of these high gain
locations (defined later as 3x3 cm? areas), computed across

5

64 boxes from all experiments . Evidently, ~ 40 high gain
locations are available on average in a box, with some boxes
offering far more. This is a favorable indication.

(6) How Scattered are High Gain Locations?

It is important to also characterize the scattering of the high
gain locations within the box — if all the high gain locations
are clustered in a small region, searching one of them can
still be time consuming. Figure 9(b) shows an example of
the scattering in one box — the white marks denote high
gain locations and visually illustrate that they are “well scat-
tered”. However, to quantify this, we compute the distance,
0, that an AP must travel to encounter a high gain location.
Figure 9(c) plots the CDF of § with randomly chosen starting
positions, and with mobility similar to a 2D raster scan
within the box. Evidently, d is quite small for a large fraction
of the cases, suggesting that high gain locations can be
encountered without searching for too long. This brings
hope that the potential gains might actually be achievable.

Of course, the above graph also suggests that in some
cases, the AP needs to move a large distance to encounter
a high gain location. However, this does not mean that for
these cases, the performance will be poor. To capture this, we
attempt to answer the following question: if the AP moves a
pre-specified distance §, what is the best performance that can be
achieved? Specifically, for increasing values of J, we record
the best data rate encountered, and compare this data rate
against a static AP (i.e., median data rate in the box) and the
Oracle (i.e., the max data rate in the box). Figure 10(a) and
(b) plot the two comparisons, respectively — § is defined as a
fraction of a full raster scan in the box. Figure 10(a) suggests
that even when the AP travels a small distance (6 = 5%
of the raster scan), the data rate gain over static AP is still
1.5z. Figure 10(b) suggests that this gain reaches close to the
Oracle. Thus, the overall message is that strong locations are
not elusive — even if the best location is unavailable, “good”
ones can be found quite quickly.
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(local max) can still offer good gains over a static AP. (b) Local max is
not too inferior compared to the Oracle.
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Fig. 9. (a) CDF of number of high gain locations observed in one box (high gain defined as 0.95 of the max SNR in that box). (b) High gain
locations within one box (marked with white dashes) shown as an example. (c) Distance traveled to reach high gain locations (distance defined as

a percentage of raster scanning the entire box).

(7) How Predictable are High Gain Locations?

In designing a practical system, it would be useful if the
existence of a nearby high gain location is predictable. Such
predictions may be possible if the locations surrounding the
high gain location form a gradient, like a “hill”. On the other
hand, if the surrounding locations exhibit significantly less
correlation to the high gain locations, then predictions are
difficult. To this end, we compute the CSI at a given location
and measure how the correlation degrades as we move
gradually away from it. If the correlation degrades gradu-
ally, it would indicate the “hill” we desire. Figure 11 shows
the results of this experiment. Unfortunately, we observe
that CSI correlations are strong until separations of 2.5¢ms,
but plummets drastically at separations of 3cms and more.
This implies that the coherence region of a signal is around
3cmes, and locations outside that region is a poor indicator
of its neighborhood. We term this 33 ¢m? coherence region
as a pixel — which now defines a “location” — and recognize
that neighboring pixels will vary drastically in SNR or data
rate. Thus, the data rate landscape is like a “jagged moun-
tain range” in the granularity of 3cms, making predictions
difficult. These results and conclusions are consistent with
multipath theory and independent measurements [18]-[20].
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Fig. 11. Data rates within a 5 cm shift of the mobile AP

(8) How Persistent are High Gain Locations?

If small changes in environmental factors cause the channel
to change drastically, then iMob may not be worthwhile,
since the AP will need to move very frequently. We clas-
sify environmental factors in 3 categories, namely human
mobility, object mobility (e.g., doors, furniture), and device
mobility (e.g., a smartphone moving in the user’s hand). We
then extensively investigate temporal stability by perturbing
each of these factors —a human user typing on the keyboard,
many people walking around, furniture moving, client lap-
tops moving, etc. In the interest of space, we distill our key
findings: (1) Client device mobility at the centimeter scale
induces drastic change in the CSI, causing the channel to
heavily fluctuate. iMob may not be beneficial to such devices

(tablets, smartphones) when they are being held/carried in
the hand. (2) For a static device (e.g., laptop, TV), human
and object mobility impact the channel only when they
block dominant signal components between the AP and
the client. However, as shown in Figure 12(a) and (b), the
channel revives once the human/objects have moved past.
(3) Only when the human or object moves to a new position,
and also blocks the dominant signals, the CSI (and data
rate) changes persist. However, such changes occur in the
time scale of minutes [18] and can be detected by tracking
changes in the CSI (detailed later). Thus, the take away
message is that iMob could be effective even under dynamic
environments, so long as the clients are static.
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Fig. 12. Data rate fluctuates when (a) humans and (b) objects move
close to client, dwells for 10s, and walks past; the rate revives quickly.

4 SYSTEM DESIGN

We take away 3 important messages from the measure-
ments above: (1) The achievable performance improvement
due to robotic AP mobility is substantial, available under
realistic conditions (multiple clients and different indoor
environments), and hence worth pursuing. (2) The high
gain locations are challenging to model because they are
randomly located, spatially small, and often juxtaposed next
to poor SNR locations (making predictions difficult). (3)
Although challenging, some opportunities offer hope — the
high SNR locations are many, well scattered in a box, and
stable for reasonable time scales even in real environments.
This section is aimed at designing a practical AP motion
planning algorithm that will suitably cope/leverage the
above challenges and opportunities.

Some Design Guidelines

The core task of the algorithm is to search through different
pixels (called exploration) and stop at a pixel that is expected
to offer maximum performance gains (called exploitation). In
the interest of space, we omit various trials and deliberations
that led to our final design; instead, we briefly discuss the
key design guidelines that emerged from them. We will then
assemble these guidelines into a practical iMob AP.



(1) Since AP mobility is at far slower time scales than
packet transmissions, the exploration process must be
speedy. Otherwise, an AP would spend unnecessary time
at suboptimal pixels, widening the gap with the Oracle.

(2) Robotic motion is not accurate due to skidding of
wheels, noisy compass values, mechanical turns — thus a
robot cannot go back on the exact path on which it has
traveled. This implies stopping decisions need to be made
on-the-spot based on the SNR at that pixel. Performing a
search and then retracing back to the max pixel on that path
is not an option.

(3) The need to stop immediately at a high SNR pixel
limits the maximum speed of the AP. Specifically, the
inertial displacement after applying the brakes should be
no more than a pixel width — this will allows the AP to stay
within the same pixel once it decides to stop.

(4) Stochastic hill climbing or simulated annealing
algorithms are not an option. Simulated annealing either
incurs excessive time, or the starting point of the algorithm
must jump to different random locations, which is impracti-
cal for the physically moving AP. Also, as mentioned earlier,
these algorithms assume that backward motion is possible,
which in our case is difficult.

(5) When clients move, or the environment changes too
much, the CSI at the AP exhibits substantial change. This
can be a trigger for the AP to re-explore, since the current
pixel may have become sub-optimal. This is particularly
necessary when this client is data hungry and optimizing its
performance will boost the overall network performance.

Finally, and perhaps needless to say, the mobility heuris-
tic must be lightweight to run on a simple robot in real time.

Optimal Stopping Theory

The crux of our heuristic is designed around a result from
optimal stopping theory (OST) in applied statistics [21], [22].
The problem definition of OST is as follows. An employer
intends to hire 1 individual out of n applicants (all of
whom can be ranked based on quality). The applicants are
interviewed one by one in a random order. However, unlike
typical situations, in this case the interviewer must make
a decision immediately after the interview; once rejected,
an applicant cannot be recalled. Of course, during the in-
terview, the interviewer can rank all candidates seen thus
far, but is unaware of the quality of yet unseen candidates.
OST asks: which candidate should be selected to maximize the
probability of recruiting the best candidate. Selecting too early
can leave many good candidates unseen; picking too late
might mean that the best candidate is already rejected. The
OST result dictates that the first % candidates should be
rejected, and among the subsequent candidates, the first on
that ranks better than all 2 candidates should be recruited.

OST bears a strong resemblance to our problem of select-
ing the best pixel, primarily because the pixels are scattered
in an entirely random manner, with little spatial correlation
(3cms) (Figure 11). As a result, there is hardly a notion
of “gradient” that can be leveraged. Moreover, channel
modeling or ray tracing seemed impractical since the iMob
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AP does not have any details of the environment (floorplan,
furniture, etc.) that would influence the multipath signal
components. A statistical approach seems inevitable. In fact,
given that high SNR pixels are not rare and quite well
scattered (recall the results from Figure 9(b) and (c)), a
statistical approach may be able to find such a pixel within a
short time. The time to search can be reduced by moving the
AP fast during the exploration phase, and slowing it down
during exploitation (i.e., when its time to stop). With this
background, we now describe the heuristic precisely.

4.1

Figure 13 shows the flow-chart for iMob’s mobility planning
heuristic. The AP is placed at a random location by the
user. Once it observes a stream of packets from a client,
it begins an exploration phase. In this phase, it performs
a raster scan at its maximum permissible speed, V4.,
recording the channel state information (CSI) from each
packet transmitted by client(s). Of course, the AP continues
to communicate during exploration, moving through pixels
of varying quality. The exploration continues until the AP
has moved through £ pixels, where N is the total number
of pixels in the box. ]\ét this point, the AP computes the best

pixel among these - pixels, where “best” is defined as an

utility function of CSI:

Mobility Planning Heuristic

Unae = max
pe(l, %

1,

p

(zi log(SNR;) >

where p denotes a pixel covered by the AP, i denotes the
index of its own clients. I, denotes the number of inter-
fering APs and clients sensed at p. The AP now enters the

exploitation phase.
Exploit
(Look for Umax)

Timer Expires

Umax = Max
Utility (n/e)

Exploration
(reject n/e
pixels)

Found Umax

Fig. 13. Core flow diagram of iMob’s heuristic

During exploitation, the AP computes every pixel’s utility,
and stops whenever a pixel’s utility is > U4, However,
to brake and stop in the same pixel, the velocity of the
AP must be reduced during exploitation. Otherwise, inertia
and skidding of wheels will propel the AP forward, and
returning back to this exact pixel will be time consuming.
The reduced speed, Vi, is designed such that inertial
displacement (after the application of brakes) is less than
a pixel length (3cms) (discussed earlier). Once stopped, the
AP continues communication with the client(s), expectedly
at a near optimal data rate.

The AP remains in this location until a new data hungry
client joins, or if it observes a substantial change in the CSI
of a client. Substantial CSI changes suggest mobility of the
client or appreciable changes in the environment. Under
both these conditions, the AP triggers the exploration phase
again, and relocates to a new pixel.



A common perception might be that the exploration
phase incurs a performance penalty because the AP is mov-
ing during this time and communicating from sub-optimal
pixels. We observe that this sub-optimality is true w.r.t. the
Oracle but not w.r.t. the static AP. Note that a mobile AP
should statistically achieve the same performance as a static
AP during exploration because the mobile AP will move
through both strong and weak pixels. Evaluation results
confirm this (as discussed later in Figure 15(c)).

A natural question might be: what if the channel quality
at other locations improve over time — an iMob AP will not be
able to proactively exploit this opportunity. We observe that this
is unlikely when CSI is used as the indicator function. If
some other pixel has to improve substantially, then either
the client must move to a new location, or the environment
must change appreciably. Unlike SNR, both the effects will
manifest in CSI variations.

Improvements to the Heuristic

We discuss a few optimizations to the core heuristic above.

(1) In some cases, the exploitation phase may not end
quickly — the AP may not encounter a pixel offering Usyax
for a long distance. In such cases, the AP could be made
to lower its expectations in proportion to the time spent in
the exploitation phase. In other words, the AP starts with
the hope to achieve U,;,q,, but progressively lowers the bar
to some fraction of this value. The rational is stop soon at a
pixel that offers reasonable utility, as opposed to paying the
cost for finding the perfect pixel.

(2) Data hungry clients, such as those that perform video
streaming, are likely to be the highest beneficiaries of iMob.
However, most video streaming clients buffer data, leaving
bursts of time in which packet downloads are much less.
The AP could exploit these gaps to explore — if new pixels are
discovered with greater utility, it could relocate. Recall that
the pixel at which the AP stopped moving is not guaranteed
to be optimal — its only a statistical estimate using OST.
Exploring more can still be beneficial.

4.2 Multi-AP Coordinated Motion Planning

We extend the above heuristic to multiple APs (e.g., in resi-
dential neighborhood) by engaging the cloud as a mobility
coordinator. The goal of the coordinator/controller, in both
home and enterprise settings, is to position the APs in a
manner that maximizes the utility metric ) U;.

We extend the previously defined utility metric for mul-
tiple APs as a function of other APs and clients as follows.

Ui({AP| ¥l € [1, K]}, {Client,,| ¥m € [1,C]})

. Ej lOg(SNRij)

= . ,
K is the number of APs and C' is the number of clients in
the system. SV R;; is the SNR of client j which is associated
to AP ¢, and N, is the number of interferers (both other APs
and their clients) audible to AP;. The log function encodes
some level of fairness, so that an AP is not incentivized to
position itself too close to any client. Of course, this utility
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does not capture the variation in traffic, rather assumes that
all APs/clients are backlogged. Our goal is to characterize
the gains even under these simplifications.

The optimal solution to this problem obviously requires
a joint optimization on mobility and the utility function. The
search space is large because an individual AP could move
quite a bit to optimize for itself; moreover, all the APs could
jointly move to mutually benefit each other. Since any AP
movement will alter both the numerator and the denomi-
nator of the AP’s utility function, the possible combinations
quickly explode. We first prove that this problem is NP Hard
and then present a simple heuristic solution.

Proof of Hardness

Consider K APs and n clients on a 2-D plane. We define
the following problem. Position the K APs such that the
distance from clients to their respective closest APs is mini-
mized. We prove NP hardness for this simpler version of the
problem. We define the objective function formally below.

K
minimize O =Y Y (¢; — AP)? 1)

=1 cj €s;

Here, c; € §;, the set of clients associated to AF;. The
summation includes all such sets S; (Vi € {1..K}) for the K
APs, thus taking all clients into consideration.

We prove NP hardness by reducing the 2-D k-means
clustering problem into an AP placement problem. Given
a set of points p; Vi € {1...n}, the k-means problem groups
them into K clusters to minimize the objective function,

— p;)? ()

In the above equation, u; is the mean for all p; € S;. K
such cluster sets S; (Vi € {1..K}) are formed.

Reduction 1: The k-means clustering problem can be
reduced to the AP placement problem by trivially using the
position of data points p; in the k-means clustering problem
as the the client positions ¢; in the AP placement problem.
This is a one to one mapping Vi € {1..n}.

Lemma 1: An optimal solution to the AP placement problem
must have APs at centroids of clients they are associated to.

PROOF. Let AP; be placed at position (z4p, Yap) On the
2-D plane. Let the set of clients associated to it be S;, which
includes m clients c; at positions (¢;jz, ¢;y) Vm € {1..m}. We
can denote the objective function of AP positioning as O =
>t ((¢ja —ap)? + (Cjy = Yap)®)- To minimize the objective
function, let us set % = 0. This implies optimizing z,, =

S

— , which is the x-coordinate of centroid. Similarly,

e . m, (¢jy) . 2
optimizing y,, = 2% when ;TOP = (. Since, 3720 >0
a ap
d%0
and o2z,

> 0, at the above centroid positions, the centroid
positions minimize the objective function O.

Lemma 2: An optimal solution to the AP placement problem
is a valid solution to the clustering problem.



PROOE. A group of clients S; (Vi € {1..K}) assigned
to each AP can be considered as the it" cluster S; of the
clustering problem, which is a valid solution.

Lemma 3: An optimal solution to the clustering problem is a
valid solution to the AP placement problem.

PROOF. Suppose the clustering problem produces K
clusters S; Vi € {1..K}. Given Reduction 1, the clients can
also be similarly grouped into K clusters S; Vi € {1..K}.
APs would be placed at the centroid positions p; and each
client in S; would associate to the AP at p;.

Lemma 4: An optimal solution to the AP placement problem
is an optimal solution to the clustering problem as well.

PROOFE. Suppose a solution denoted by Sol is the opti-
mal solution to the AP placement problem, then the AP po-
sitions AP; Vi € {1..K} has to lie on the centroid of clients
associated to AP; (Lemma 1). Given that every solution of
the AP placement problem has to be a valid solution for
the clustering problem, Sol is a valid solution the clustering
problem as well (Lemma 2). Suppose Sol', different from
Sol, is the optimal solution to clustering problem. Then, the
objective functions O must obey O(Sol') < O(Sol). Then,
since Sol! is also a valid solution to the AP placement prob-
lem (Lemma 3), and since O(Sol') < O(Sol), this contradicts
the initial statement that Sol is the optimal solution to the
AP placement problem. Hence, Sol must be the optimal
solution to the clustering problem as well.

Given Lemma 4 above, and the Reduction 1 above, and
the fact that 2-D k-means is NP-Hard [23], we can prove
that the simpler version of the AP placement problem is
also NP-Hard. We now present a simple heuristic for the
broader version of the AP placement problem.

Heuristic Design

Algorithm 1 describes our heuristic for the enterprise (a
small modification makes it applicable to homes). While the
focus of the paper is to demonstrate the promise of feet scale
micro-mobility, the heuristic covers a broader class of macro-
mobility, where the AP can move across multiple spots,
covering several meters. In future smart homes, perhaps
tracks installed on false ceilings can help realize macro-
mobility. Yet, we restrict real testbed experiments to micro-
mobility but evaluate both macro-mobility (for enterprises)
and micro-mobility (for homes) under simulations (detailed
later). Assuming K APs available, the core intuition is
that clients can first be clustered into K groups (K means
clustering), and each AP assigned to a cluster. Assuming
client locations are roughly known, the APs can be ini-
tially placed at the center of mass (CoM) of their respective
clusters. For ease of explanation, let us number the APs
from 1 to K. The first AP is moved within a radius r
such that U;(Client,,|V m € [1,C]) is optimized (i.e.
ignoring other APs); the second AP is moved within a
radius r from its CoM, such that it relocates to a loca-
tion that maximizes Uy (APy, Client,,). With AP1 and AP2
fixed in their positions, AP3 is now moved within radius
r from its CoM, such that it relocates to a location that
maximizes Us((APy, AP, Client,,). This continues for all
APs, and at the end of this pass, the controller computes
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Zie[l, ) Ui The controller executes multiple passes of the
same operation but placing the APs in a different order
each time. The maximum value of ), en, k) Ui from all these
passes is selected, and the corresponding AP configuration
prescribed. APs move to the prescribed locations on the
grid-tracks, and performs micro-mobility (explained later).

Algorithm 1 Coordinated AP mobility heuristic

1: Input: P: Set of K APs
: Create cluster of clients C; V¢ € [1,K]
: Assign cluster C; to A; Vi € [1K]
: for p < 1 to MAX_PASS do
for all A;, i < Random_Ordering(l to K) do
Place A; @ location that maximizes
Uip{AP|VI € [1,i — 1]}, {Client,, [V m € [1,C]})
Update U;;, and send to CONTROLLER
8: end for
end for
10: CONTROLLER: Select

Zie[l,K] ,DE[L,MAX_PASS)| Uip

Ul W N

N

s

AP positions to maximize

The heuristic for Home is identical, except for two fac-
tors. (1) APs are not initialized at the center of mass (CoMs),
but at their installed locations (near the wall). (2) They only
perform micro-mobility step using the same utility function,
which is outlined next.

In the next phase, the controller co-ordinates
micro/mini-movement of APs to further optimize the same
utility metric by taking advantage of multipath diversity.
The APs physically move and explore/exploit a spot (2x2
feet area) around their controller assigned positions similar
to the single AP placements (Section 4.1). Each AP performs
this step, one after the other in a sequential order, by
considering only the previous APs who have settled down.
The APs that are yet to move are ignored in exactly the
same fashion of controller assigned positions in Algorithm
1. The APs physically measure the utility metric and settle
at their respective local optimum positions.

5 EVALUATION

We evaluate a completely functional single and multi-AP
iMob system and focus on (1) the throughput and fairness
comparison with today’s static APs, (2) the gap from the
Oracle, and (3) the impact of various parameters, such as
client density, traffic sessions, mobility area, etc. We begin
with a brief description of our experiment methodology.

5.1 Implementation and Methodology

The evaluation platform is similar to the measurement
platform, with few key differences. The iMob explo-
ration/exploitation heuristic has been implemented in the
Linux kernel to completely operate in real time (e.g., pixel
search, utility computation, Roomba speed control, brak-
ing). Performance is measured on the wireless link only — the
wired Internet connections at residences are the bottleneck,
so connecting to the Internet would not reflect the actual
wireless gains. We perform both single AP and multi-AP
experiments. In the multi-AP case, a central server controls
4 APs — deployed across 2 floors of our university building



— to extract holistic SINR and topological gains. Clients
associate to our AP and upload/download packets over
UDP/TCP while the AP moves to optimize performance.
To compare against the Oracle, we performed experiments
with continuous mobility and used the CSI data to pre-
cisely infer data rates [17] and throughput of each scheme.
For realistic backlogged traffic, we record and use packet
traces from YouTube, Google Hangout, and casual browsing
sessions, captured from Wireshark. Across all experiments,
the AP and clients were placed at realistic locations (to the
extent possible). The environment was completely uncon-
trolled with people naturally moving, working, etc.

As a final point, Figure 14 plots the inertial displacement
of our Roomba robot from the time of braking, for increasing
AP speeds. Given pixels width of 3cms, the maximum AP
velocity prescribed by this graph should be less than 20
cms/s — we conservatively use 5cm/s since the braking may
happen half-way into the pixel.
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Fig. 14. Roomba’s inertial displacement after braking.

5.2 Real-time Single AP Experiments

Figure 15(a) plots the throughput comparison between iMob
and a Static AP for various sessions, using 4 static and
fully backlogged clients. Average throughput improvement
is 44%. One of the cases shows Static performing slightly
better, perhaps because it was fortunately located at a strong
SNR pixel. This is statistically a rare event, but possible.

Figure 15(b) compares the throughput achieved during
the time the iMob AP was moving — this confirms that
AP mobility does not impose a performance penalty. The
throughput achieved by Static and Mobile are comparable
since, statistically, the Mobile AP moves through both strong
and weak quality pixels. However, once the AP stops at a
strong SNR pixel, the performance exceeds Static thereafter,
translating to net gain. Figure 15(c) zooms into the data rates
observed during the exploration and the exploitation phase,
showing how iMob’s performance improves after stopping.
Note that even while stationary, an AP (both Static and
Mobile) still experiences rate variations by around a notch
due to temporal fluctuations (as seen in Figure 3).

5.2.1 Coping with Environmental Dynamism

Observe that environmental dynamism may alter the opti-
mal AP position, hence the iMob AP will need to trigger a
new exploration phase. iMob uses a CSI based classification
method that correlates the newly observed CSIs with recent
CSIs, using techniques similar to [18]. If the correlation
drops below a threshold, the AP triggers a relocation. For
this, a client was mounted on a Roomba and programmed
to move periodically in our experiments. Fig. 16(a) plots
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example timings of the client mobility and the Mobile AP’s
relocation trigger. The detection accuracy is robust and
not affected by other humans moving in the environment.
Fig. 16(b) plots the detection accuracy across all experiment
sessions, as a function of the distance the client moved from
its prior position. In some additional cases, the AP also
triggered mobility because CSI changed (though the client
did not move), but we are unable to verify if it was a valid
trigger. This is because we do not know the ground truth
on whether the environment truly changed or not, hence
false positives cannot be computed in such cases. To shed
more light, Fig. 16(c) shows the CDF of throughput variation
between two cases: (1) a human is typing and working
with the client laptop, and (2) the client laptop without the
human user. The similarity in deviation suggests that the
channel does not vary due to the human working, obviating
the need for iMob APs to move in such realistic cases.

5.2.2 Fairness and Leash Length

Figure 17(a) shows that throughput improvements with
iMob is not obtained at the cost of fairness. Using Jain’s
Fairness Index, we find comparable performance as Static.
Moreover, if desired, iMob can explicitly optimize for fair-
ness, or even a combination of throughput and fairness.

Figure 17(b) plots the variation of throughput with de-
creasing coverage area of the mobile AP. The performance
does not degrade too much, indicating that the diversity is
truly rich. This bodes well for iMob — even where the AP has
less than a feet to move around, the single AP throughput
gains can still be 40%.
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Fig. 17. (a) Fairness does not suffer with iMob. (b) Throughput loss for
decreasing mobility area.

5.2.3 Comparison with Oracle

Fig. 18 compares iMob’s performance against Oracle and
Static AP, for single client scenarios. The experiment ses-
sions are derived from wireshark traces of YouTube, Hang-
out, and a casual browsing session. For example, for
YouTube, active time windows were concatenated, while
intermediate gaps (typical for buffered playback) were not
considered. Evident from the graphs, increasing session
lengths improve throughput because the sub-optimality
during the exploration phase gets amortized over longer
session lengths, and the performance at the best pixel begins
to play a more dominant role. Fig. 18(a) shows that iMob
remains reasonably close to the optimal, around 0.9. Against
Static AP, iMob achieves around 40% gain on average, but
exceeds 80% in some cases with longer traffic sessions.

Fig. 19 shows the variation of iMob’s throughput against
the Oracle and Static for increasing number of clients. iMob
outperforms Static consistently and stays close to the upper
bound, affirming efficacy of the optimal stopping heuristic
to find a high quality pixel, even within 2 feet mobility.
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Fig. 15. Throughput from real-time iMob with 4 clients: (a) Overall average throughput. (b) Average throughput when the AP is mobile, showing that
AP mobility does not impose a performance penalty. (c) Data rate variation before and after stopping — the mobile AP’s rates are comparable to the

Static until it stops, and higher thereafter.
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Fig. 16. (a) AP detects when client moves and trigger relocation. (b) Detection accuracy for increasing client displacement. (b) Variation of data
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5.3 Real-time Multiple AP Experiments

Figure 20(a) shows the topology setup in our engineering
building. The testbed is spread over two floors and consists
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Fig. 19. Median throughput for increasing clients.

of 4 APs with a total of 6 clients (each AP associated to
1-2 clients). All clients and APs are assumed to be fully
backlogged with traffic and transmit at any available op-
portunity. All APs were placed in the 2.4GHz channel such
that the neighboring APs are at the edge of each other’s
interference range. Transmit powers were assigned at 8dBm
to all the nodes; clients remain static for all the sessions.
The topology mimics an EWLAN network of access points
where the APs in the same channel are placed far from
each other. A central server connects to each AP over WiFi
and coordinates their movements to configure an effective
topology that offers strong SNR to the AP’s clients but
avoids interference (to the extent possible) from other APs.



Fig. 20(b) and (c) report the downlink and uplink UDP
throughput comparison between the Mobile and Static AP.
Gains are significant — 65% for downlink and 90% for uplink
on average. We believe the gains for uplink are higher than
the downlink with iMob APs for the following reason. When
an AP is receiving, gains from its mobility may come from
the increased signal strength from its client and also the
decreased interference from other APs and clients. On the
other hand, when the AP is sending, its client, being static,
may not get the benefits from the interference avoidance.
Consequently, throughput gains for uplinks are likely to be
higher than downlinks with iMob APs. Fig. 20(d) zooms
into this break-up and shows the improvements due to
spatial reuse. The “Gain %" on the Y axis shows how much
extra opportunity was created by evading interferers in
comparison with the static AP case. The average gain was
about 12%, considerably less than client throughput gains.
This is because of the binary nature of the carrier sensing
threshold (APs need to find positions where the interferer is
outside the sensing range). Nevertheless, the gains are still
worthwhile because it combines multiplicatively with data
rate gains resulting in net amplification in throughput.

6 LARGE SCALE SIMULATIONS

We conduct NS3 simulations using measured real channel
data for scalability testing. For enterprises (EWLANS), the
setup is modeled after the floorplan of our 54 x 36 square-
meter lab — 12 rooms, with around 1 AP for every two
rooms, and 4 active clients for each AP. For residences
(Home), we consider 6 neighboring houses, each with 1
AP and 4 active clients. As a comparison baseline, APs are
placed arbitrarily near the walls.

Performance Results
Data Rate

Figure 21(a) plots CDF of data rate improvement in the En-
terprise and Home, against the respective baseline of static
APs. The median improvement in Enterprises is around
10 Mbps, demonstrating the value of optimizing client
SNR alone (note that avoiding interference improves spatial
reuse, but not data rate). Median improvement in Home is
around 7 Mbps, lower than enterprises due to the shorter
“leash” in mini-mobility.

Figure 21(b) compares the Enterprise heuristic with “Ex-
tensive”. The latter is essentially the same heuristic, except
that it is not restricted to move within 7 radius from the
CoMs; the APs can relocate to any location in the building.
Evidently, searching extensively offers appreciable data rate
improvements, albeit at the cost of some increase in the
search time. Since macro-mobility can be entirely simulated
in the cloud with coarse pathloss models, perhaps “Exten-
sive” can indeed be achieved in practice.

Throughput and Fairness

Figure 22 plots the median throughput improvement for
UDP, TCP, uplink, and downlink traffic. These are averaged
across 50 random client topologies. Collisions cause TCP to
backoff aggressively, resulting in lower gain than UDP.
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Fig. 21. Data rate gains in enterprise and homes.
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Figure 23 shows the raw throughput variations with
varying number of clients. With 5 clients per AP, which
translates to considerable interference (when clients are
transmitting and causing hidden/exposed terminals), the
raw throughput is appreciably higher than the baseline.
Gains are naturally larger for fewer clients. Figure 24 plots
the fairness improvement percentage over the static base-
line. Improvements are quite substantial since the APs are
programmed to move around the CoM, unless there is an
extremely strong benefit elsewhere. Evidently, throughput
and fairness are not a zero sum game - the ability to move
to appropriate locations indeed extends rich opportunities.
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Fig. 23. Throughput as a function of number of clients
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Fig. 24. Fairness not sacrificed for throughput gains.

Energy

The increase in SNR and data rates reduce the air time
of packets, both for a given AP-client link, as well as for



(overheard) interfering transmissions. Avoiding interference
further reduces overhearing, all together contributing to
substantial energy reduction. Figure 25 shows the percent-
age energy savings over the static baseline, normalized by
the number of packets — 30 to 40% gains are feasible. Energy
specific optimizations can offer additional gains — the APs
could move to ensure that some smartphone’s remaining
battery life is optimized. We note that the energy consumed
for moving an AP is orders of magnitude higher than
the energy saved by improving communication. However,
this tradeoff is not considered in this work, as we assume
tethered mobility, where iMob APs are connected to power
and Ethernet while being mobile (as depicted in Fig 1).
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Fig. 25. Energy savings in Enterprise and Home.

Tradeoff between Mobility and Performance

We explore the variation of performance gain with “moved
distance”. Figure 26(a) shows rise in throughput in the En-
terprise when the AP is allowed a longer “leash” (expressed
in terms of spots scanned). Evidently, moderate amount of
mobility can offer most of the gains — searching 20 spots
attain almost 65% of Extensive. Home trends are similar,
except that the gains saturate quicker due to the shorter
“leash”. We measured the CDF of overall AP mobility and
find that the median is 4m (and max 8m), indicating that
moderate mobility brings most of the gains.
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Fig. 26. (a) Moderate mobility around CoM offer good gains in enter-
prises. (b) Home gains saturates quicker.

7 LIMITATIONS AND OPPORTUNITIES

This is an early attempt to characterize and exploit the
landscape of robotic wireless networks. Much remains to
be done.

e Moving client devices. A key limitation is that con-
stantly moving clients will not benefit from iMob since the
channel will change constantly. For such devices, however,
the performance will still match the static AP. On the other
hand, all scenarios where devices are static — video confer-
encing on laptops, streaming on smart TVs, even watching
movies on a tablet on the table — gains are consistent. We
believe these favorable scenarios are reasonably common.

e Joint Mobility and Power Control: Adding mobility
to APs warrants revisiting classical problems in wireless
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networking. Power control and channel allocation can now
be performed jointly with mobility, and adapted to changing
traffic conditions.

e Localization and Security: Micro-moving APs may be
able to mitigate the impacts of multipath, converging to a
reasonably accurate pathloss index for their observed chan-
nel. Moreover, they could move macro distances to “look” at
clients from different vantage points, ultimately aiding the
triangulation and trilateration techniques. Security benefits
can also emerge from constantly moving the device, thereby
changing the channel properties that are used as the “secret
key” between the transmitter and receiver.

8 RELATED WORK

Network mobility has been considered in a number of prior
works. Work in [24], [25] formulates the problem of mobile
router placement to enhance the performance of a group of
clients. [24] fits channel measurements to derive parameters
of a channel model and uses it to perform robotic router
placements. Authors consider a network flow optimization
problem for AP placement in [25]. A multi robot system
for servicing a particular area has been considered in [26].
Similarly, work in [27] uses a synthetic aperture RADAR
to estimate the angle of multiple arriving components at a
mobile router, and use this information to move the robots
in directions of maximum performance enhancement. Co-
operative MIMO schemes are presented in [28] where multi-
ple sensor nodes jointly stream data to the base-station. Such
schemes would be complementary to iMob, where multiple
APs could jointly beamform towards clients. While, prior
work mainly exploits long range channel diversity, iMob’s
ability to exploit wireless multipath at granularities of few
cms and feet is unique. In addition, iMob performs end-
to-end throughput enhancements whereas the optimization
functions in [24], [27] are based on packet drops or link
quality enhancement. Consequently, iMob models interfer-
ence during mobile AP placement. Finally, iMob performs a
full throughput experimental study, whereas [24], [27] only
evaluate data rates or route communication quality.

The work closest to this proposal is probably MoMiMo
[6], where the receiver adjusts its antenna in centimeter
scales to perform interference alignment. While MoMiMo is
a specific optimization for interference, this paper attempts
to create a broader theme of robotic wireless networks,
and presents a case for the regime of feet scale full-device
mobility. Perhaps a further step in this direction is “software
defined mobility” where the cloud controls the mobility of
network infrastructure. Finally, MoMiMo is complementary
to iMob — a future WiFi AP can implement both. Google’s
project Loon [29] provides Internet access to remote ar-
eas via ad hoc network-style balloons drifting above the
stratosphere. DARPA envisioned the use of self-autonomous
network of LANdroid robots [30] to provide connectivity
in urban warfare areas. Our broad proposal certainly bears
similarities, but concentrates on injecting controlled mobility
to today’s established infrastructure.

Spatial diversity has been exploited in MIMO, beam-
forming [31], [32], and through other opportunistic ideas



[33], [34]. Infrastructure mobility is by no means an al-
ternative to these. Our results show that moving within
a 2 feet box can yield higher data rates even with a 3x3
MIMO interface — we believe that feet-scale mobility can
offer higher ranked channel matrices. From the robotics side,
authors in [35], [36] have researched how robots cooperate
to achieve a common wireless communication goal. In one
instance, robots plan their motion paths to constructively
beamform towards a specified receiver. Authors in [37] have
envisioned robots forming a “chain route” to maintain con-
nectivity to first responders (e.g., fire fighters) moving into
a catastrophe stricken building. Delay tolerant networks
have also considered node mobility [38], even in under
water [39] and mobile sensor networks [40]. We believe this
paper is still different in the sense that it brings feet-scale
controlled mobility to existing network infrastructure that are
conventionally viewed as static.

9 CONCLUSION

This paper envisions WiFi APs-on-wheels that move in
controlled ways to optimize desired performance metrics.
Early results are promising, although a deeper treatment is
needed to fully characterize the interplay of many parame-
ters underlying the success of such technology. Nonetheless,
mobility is a valuable degree of freedom missing in today’s
network infrastructure, and extending research attention to
it, we believe, is entirely worthwhile.
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