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Abstract—Today’s smartphones provide a variety of sensors,
enabling high-resolution measurements of user behavior. We
envision that many services can benefit from short-term predic-
tions of complex human behavioral patterns. While enablement
of behavior awareness through sensing is a broad research
theme, one possibility is in predicting how quickly a person
will move through a space. Such a prediction service could have
numerous applications. For one example, we imagine shop owners
predicting how long a particular customer is likely to browse
merchandise, and issue targeted mobile coupons accordingly –
customers in a hurry can be encouraged to stay and consider
discounts. Within a space of moderate size, WiFi access points
are uniquely positioned to track a statistical framework for user
length of stay, passively recording metrics such as WiFI signal
strength (RSSI) and potentially receiving client-uploaded sensor
data. In this work, we attempt to quantity this opportunity, and
show that human dwell time can be predicted with reasonable
accuracy, even when restricted to passively observed WiFi RSSI.

I. INTRODUCTION

The convergence of sensing, computation, and communica-
tion on modern smartphones is offering valuable insights into
human behavior [3], [8], [9], [16]. We attempt to bring these
insights into a relatively unexplored problem space. We ask:
by leveraging the sensor readings from users located at a WiFi
hotspot, can we predict how long a given user will stay nearby?
We call this the user’s dwell time. Predictions for length of stay
at a WiFi hotspot can be beneficial for enhancing the wireless
network, as we will consider in the later part of this paper,
and also for domains outside of networking. For example, we
imagine shop owners launching a targeted mobile marketing
campaign with coupons to slow down hasty shoppers.

We design and implement ToGo, a general framework for
behavior-aware dwell prediction. With ToGo, mobile devices
periodically report their sensor readings to the AP (e.g.,
accelerometer and compass). The AP runs a machine learning
algorithm that accepts the sensor readings as features of user-
behavior, combines these with other passively-observed mea-
surement features from WiFi RSSI, and periodically predicts
the user’s dwell time. In the airport, for example, compass
directions combined with WiFi signal strengths may reveal a
signature, adequate to identify that a user will soon exit the
terminal. The system learns the appropriate signatures using
the initial set of users as the training set; there is no need for
any hotspot-specific configuration.

We evaluate ToGo through live experiments with real users
at a university cafe. Our testbed is composed of 9 Google
Nexus One phones (for mobile users) and a laptop posing
as the AP. For larger-scale experiments, we record real user
behavior, and mimic them at the university’s library, cafe, and
McDonald’s. Although our machine learning-based approach

is reflective of a first attempt in this nascent space, evaluation
results show reasonable success in predicting client dwell
duration for real human activities. We believe that further
refinements can make ToGo a robust, dependable service.

While we fully concede that ToGo is a prototype, and can
benefit from further large scale testing and tuning, particularly
across a wide range of hotspots, traffic patterns, and human
users. Nevertheless, we believe that results in this paper are
promising, and justify a longer-term research engagement. The
promise is particularly pronounced because, with limited train-
ing, ToGo performed seamlessly for a completely uncontrolled
experiment with live users. With improved machine learning
and activity recognition algorithms, ToGo may become a use-
ful building block for different kinds of predictive applications.

Our main contributions are summarized as follows.
(1) We design ToGo, a framework for predicting length

of stay at WiFi hotspots. ToGo leverages automatic self-
training for live dwell predictions without any hotspot-specific
configuration.

(2) We implement ToGo on Google Nexus One phones
and on a laptop-based WiFi AP. Results with real patrons
at public locations encourage our approach.

(3) We present BytesToGo, a case study application of
ToGo. BytesToGo considers the opportunity of offloading 3G
or 4G traffic to WiFi through predictive prioritization. We
show that mobile device sensors may reveal user intentions,
facilitating informed network decisions.

II. MOTIVATION

We begin with a discussion of the important research
questions motivating our work on ToGo.

Is dwell time worth predicting? Do distinct classes of human
behavior exist in practice? ToGo relies on the hypothesis
that mobile users dwell for different durations at a hotspot,
and their dwell times correlate to their activity. To verify the
diversity in dwell times, we visited a university cafe and set up
a WiFi-enabled laptop as a traffic sniffer. We selected the three
strongest APs in the cafe, and used tcpdump to monitor the
distinct devices connected to these APs. Dwell time for each
device was estimated as the time-difference between the first
and the last time the device was visible to the sniffer. In five
hours of a weekday afternoon (11am to 3pm), we detected
340 distinct devices. Figure 1 shows the CDF of their dwell
times. More than one third of the devices dwelled for less than
10 minutes (e.g., the user had a quick lunch/snack); and even
among them, half of the devices stayed for 2 minutes or less
(coffee/food to-go). More than one fifth stayed at least two
hours. There is clear diversity in dwell time.
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Fig. 1. Clients at a university cafe exhibit varied dwell times, reflecting
multiple patterns of behavior. Some long-dwell clients study for hours while
more mobile users take a meal to-go.

Predicting length of stay seems difficult and highly de-
pendent on the location. How can ToGo operate effectively
across a wide variety of locations and contexts? We design
ToGo as a self-tuning system. Conveniently, the ground truth
about the user’s exact length of stay is available upon the
user’s departure—the AP knows the duration from client’s
association to disassociation. By exploiting the knowledge
of ground truth, ToGo retrains itself and naturally adapts
to the current trends in user behavior. Our measurements
suggest that (1) observable trends exist in a variety of typical
deployment settings; and (2) trends are readily recognizable
by an application of established machine learning techniques.

Will ToGo require modifications on the mobile device to
obtain their sensor readings? In testing ToGo, we consider
the value of sensor feedback from clients, anticipating that
mobile devices would run a background app to report live
sensor measurements. Practically, this might pose a substan-
tial barrier to an immediate deployment. However, we show
that, while reported sensor feedback is potentially useful, a
ToGo AP can utilize only passive observations from WiFi for
dwell time prediction: uplink RSSI measurements, 802.11 data
rates, and packet loss ratios. Moreover, controller-based WiFI
solutions, such as those from Meru, Meraki, Aruba, Cisco, and
other vendors, already aggregate such metrics across an entire
enterprise. ToGo’s accuracy can be potentially improved by
combining these metrics across multiple APs.

III. DESIGN AND IMPLEMENTATION

Figure 2 illustrates the basic ToGo architecture. A module
running at the AP gathers WiFi and sensor measurements, and
predicts on them by leveraging past user behaviors at the same
hotspot. The dwell time primitive can then be used for variety
of applications, such as traffic shaping (considered in-depth
later in this paper). We now describe the design of ToGo,
followed by the details of functional components and our
implementation choices, and finally evaluate its performance.
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Fig. 2. ToGo synthesizes client sensor feedback to estimate dwell time
for associated clients. Similar to B2G, other applications can leverage these
predictions as necessary, for example, to ensure that multiplayer games will
complete before one party leaves or to prioritize access to cloudlets [20].

A. Design Overview

ToGo clients on mobile devices export sensor readings to
the AP. This could be an implicit operation, such as with
RSSI, or explicit, as with acceleration, compass direction,
etc. These sensor readings effectively reveal the features that
characterize the user’s behavior. The AP uses a support vector
machine (SVM) to process these (multi-sensory) features and
categorize the user’s dwell time. Over time, the features
from the same class of behavior begin to exhibit similarity.
The SVM recognizes such similarities and employs them
for prediction. Correct predictions reinforce the similarity;
incorrect predictions imply that the feature set may not be
sufficiently discriminating. The SVM learns from the failures
and refines the prediction over time.

The (optional) client-side Sensor Measurement Module
systematically probes phone sensors, extracts basic statistics,
and periodically sends a summary to the ToGo server running
on the AP. These may be viewed as a timeslice of features,
capturing an instant of a user’s micro-behavior. The summary
amounts to a few bytes and sent over WiFi, incurring a small
control overhead, which can be piggybacked on other upload
traffic.

The Dwell Time Prediction Module operates on WiFi data
and client sensor summary reports to predict the dwell time
for clients as they arrive. Machine learning techniques are
employed to classify each user into one of a few groups,
corresponding to a coarse notion of expected dwell time. Our
implementation uses five dwell time-classes on a discretized
logarithmic scale (1-5), with lower values indicating a shorter
expected dwell. In examining user behavior at a campus
McDonald’s, we found that broad types of user behavior
cluster along this scale. For example, the dwell classes and
corresponding behavior were often as follows: (1-2) walking
past the restaurant, (2-3) taking food to-go, (4) buying food
and eating in the restaurant, (4-5) studying in the dining area.

When a user walks in, her short-term mobility pattern may
resemble the walk-past-the-cafe category, but as she stands
in the queue near the counter, she may be moved to the
take-out category. If she goes to pick up condiments, her
pattern will resemble the 4th (sit-down) category. When the
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Fig. 3. Periodic Sensor-Feature matrices feed the SVM sub-predictors to generate short-term predictions. Time-indexed predictions form a growing sequence
that are then used to predict the user’s long-term dwell time class. B2G is an application that uses this prediction as an input to the traffic shaping module.

user finally leaves, ToGo can learn the truth about her dwell
time, and use this data point to refine future predictions. With
many users visiting a hotspot, we anticipate reasonably quick
convergence to the true behavioral categories corresponding
to that location. Thereafter, the predictions can become more
accurate. The entire operation can be automatic, requiring no
manual configuration or tuning.

B. Prediction Engine

Figure 3 presents the prediction engine underlying ToGo.
We describe the key functional components next.

Feature Extraction. We used the Google Nexus One Phone
which has a variety of sensing capabilities, including a three-
axis accelerometer, light sensor, electromagnetic compass, and
WiFi/GSM radios. A primary challenge in behavior classifi-
cation is extracting effective sensor features that discriminate
classes of user behavior. We experimented with various sensor
features during the design stage of ToGo, before finalizing on
those shown in Table I.

Sensor (S) Feature (F)

Accelerometer

Directional intensity:
abs(x/y/z-axis acceleration)
Directional cumulative sum:
windowed sum of abs(x/y/z)
Direction-agnostic intensity:

averaged summed accelerator vector
Direction-agnostic cumulative sum:

windowed summed accelerator vector

802.11 Radio

Upload/download signal strength:
RSSI mean, std. dev., histogram

Transmission rate:
bitrate mean, std. dev., histogram

GSM Radio Signal strength:
mean, std. dev., histogram

Light Sensor Light intensity:
mean, std. dev., histogram

Compass Compass angle:
mean, std. dev., histogram

TABLE I
FEATURES EXTRACTED FROM EACH SENSOR

Short-term Predictions. The mobile device periodically
generates the sensor-feature matrix and sends it to the AP.

Each feature is computed over a moving time window to
capture the short-term user behavior. A SVM classifier accepts
the matrix, and based on training data from the past, predicts
the user’s likely dwell class. Fig. 3 shows that for a user x
at time t, the SVM sub-predictor yields a class of px

t . Of
course, this prediction does not capture long-term behavior –
a person going to the restroom in a cafe may be mispredicted
as leaving the cafe. However, this short term predictor is useful
for obtaining quick predictions. Note that observing a user over
the long term can yield high prediction accuracy; however, that
may be far too late to be of help for an application. Instead,
ToGo starts making quick predictions as soon as the user enters
the hotspot, and continues to refine its guess over time.

Sequence Prediction. The series of time indexed short-term
predictions form an increasing sequence over time, i.e., φ(t)
= <px

1 , px
2 , px

3 ...px
t >, where t is the current time. This may be

viewed as a growing signature, that incrementally reveals the
nature of the user’s behavior. Of course, once a user leaves,
the complete signature can be recorded, and her true dwell
time learnt. During bootstrap, B2G records these sequences
and dwell times, and trains itself with them – we call this the
Sequence Predictor (Fig. 3). Clusters of sequences represent
distinct classes of long-term behavior, characteristic of that
hotspot. Now, as a user begins to dwell inside the hotspot,
her partial sequence, φ(t), is matched against the recorded
sequences. The resulting prediction begins to better reflect the
user’s long-term behavior.

Coping with Time-varying Behavior. Human mobility pat-
terns may be dependent on time of day (customer behavior
may differ between breakfast, lunch, and dinner times) and
day of week. However, this does not pose a problem for ToGo
as long as most customers exhibit similar behavior during a
given time span. This is because “time” is also a feature in
our system, and the SVM identifies that distinct clusters can be
created using time as the dominant discriminator. In summary,
ToGo can automatically adapt to hotspot-specific behavior
(Starbucks versus McDonald’s), as well as to variations in time
(afternoons versus evenings).

C. Prototype Implementation

At the Mobile Client (Google Nexus One phone), a
lightweight Java background process periodically probes its



sensors to create a summary report, representing the last few
seconds of user behavior. The client forwards this report to the
AP as a single datagram packet. The ToGo Hotspot AP runs
on an Ubuntu 9.10 laptop (Linux kernel 2.6.31) with an Intel
Core 2 Duo CPU, 3 GB RAM, and an Atheros chipset D-Link
DWA-643 ExpressCard WLAN interface using the ath9k
driver. The hostapd daemon software provides a fully-
compliant 802.11b/g/n AP. We built our dwell time prediction
module on top of Click Modular Router [14]. Click provides
a convenient, high-performance mechanism to intercept client
traffic to record RSSI and bitrate from upload packets. We use
the libsvm C++ SVM library for implementing the dwell
time prediction module.

D. Performance Evaluation

Our evaluation of ToGo focuses on the ability of the dwell
time prediction module to accurately classify a client’s dwell
time. The device dwell time (used interchangeably with user
dwell time) is defined as the total time the mobile device
remains associated to the hotspot. ToGo starts predicting dwell
time as soon as the user connects to the hotspot, and refines
its guess across time. Accordingly, our results present ToGo’s
accuracy as a function of time. Naturally, we would expect
the prediction accuracy of any reasonable scheme to improve
across the dwell duration.

Comparative Schemes. Four variants of ToGo are
evaluated: NoFeedback; Basic; Basic+Compass; and Ba-
sic+Compass+Light. In NoFeedback, client feedback sum-
mary reports are disabled. The WiFi AP infers user behavior
strictly from time and (upload) RSSI/bitrate. NoFeedback
requires no client-side changes, hence is compatible with all
legacy devices. Basic generates client reports composed of
accelerometer readings, GSM signal strengths, and (download)
WiFi RSSI/bitrate. Basic+Compass adds electromagnetic com-
pass, found in newer smartphones. It is also representative of
the most feature-rich devices when placed in a pocket or purse.
Basic+Compass+Light adds a light sensor to account for the
case where the phone is exposed to the ambience. Finally, we
also include a trivial-but-reasonable scheme, called Naive. This
scheme predicts dwell time classes only based on the duration
that the device has already stayed in the hotspot. Specifically,
let [t1, t2) correspond to class i and [t2, t3) correspond to class
i + 1. Naive predicts class i until (t1 + t2)/2 and i + 1 until
(t2 + t3)/2, and so on.

To evaluate dwell time prediction accuracy, we use a metric,
Mean Dwell Misprediction, defined as follows. Assume that
user u’s true dwell time, δu

true, maps to a dwell class Pu
true.

ToGo’s goal is to converge to this dwell class as soon as
possible, and maintain it until the user leaves. At a given
time t, ToGo predicts dwell time as δu

predict(t), which maps
to Pu

predict(t). The instantaneous prediction error at t can be
expressed as Du(t) = Pu

true − Pu
predict(t). We evaluate the

prediction error across all N users at time t, as:

MeanDwellMisprediction(t) =
∑N

u=1 |Du(t)|
N

(1)

All our accuracy results are obtained using cross-validation.
The ToGo AP records micro-mobility signatures for each
client, as a function of time. Offline, the AP attempts to predict
the dwell time for a particular signature after training the SVM
on all other signatures. Accuracy is reported as the mean dwell
misprediction at each time-step (the mean computed over all
signatures).

Prediction with Real, Uncontrolled Users. We tested ToGo
prediction accuracy at a campus coffee shop (hereafter referred
to as the Cafe) with 15 real customers. As they entered the
Cafe, each customer is asked to carry a phone running ToGo
client. We gave no instructions to the customers regarding how
to carry or handle the phone. A ToGo AP is centrally deployed
to collect data from the phones. The actual behaviors were as
follows: two users of Class 1 (bought something and walked
out in less than 1 min), seven users of Class 2 (waited in
a queue and walked out in 1-3 mins), two users of Class 3
(waited for grilled food and walked out in 3-6 mins) and four
users of Class 4 (bought food and ate at one of the tables).
Figure 4 shows prediction error for all users across their stay.
All ToGo schemes converge to the correct dwell class (0 mean
error) in ≈ 2.5 minutes. Of course, this is the average across
all classes; short dwell users (such as class 2) are assigned to
their class within the first 30 seconds of arrival at the Cafe.
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Fig. 4. Cross-validation on 15 real-user traces at the Cafe. With only 14
SVM training points, ToGo correctly classified users within 2.5 minutes.

Capturing User Behavior. Running uncontrolled experi-
ments with real users is difficult at unfamiliar locations. To
test ToGo at scale, we adopted an alternative methodology.
We conducted a visual survey of people’s movements at 3
different hotspots: a Cafe, a campus Library and a McDonald’s
frequented by students (McD). We tested our system at each
of these locations, but for simplicity, we focus our discussion
on the McD hotspot.

The floor plan of McD is shown in Figure 5. It is surveyed
from 11am to 4pm, the busiest 5 hours on a weekday. We
randomly picked users and drew their movement traces on
a copy of the floor plan, along with timestamps for pauses.
These recorded traces and the timestamps were used to mimic
real user behavior. Figure 5 illustrates a user behavior along
a representative path. Activities such as taking condiments
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Fig. 6. Prediction accuracy at 3 hotspots: (a) McD; (b) Library; (c) Cafe. All ToGo variants perform better than Naive. NoFeedback performs reasonably
well in library where there is enough RSSI diversity.
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Fig. 5. Diagram shows user behavior along a representative path. User (i)
walks up to McDonald’s to examine wall-mounted menu and wait in queue
line (10-60 seconds); (ii) places order, waits for food (1-2 minutes); (iii) takes
condiments (2-15 seconds); (iv) sits and eats food (5-15 minutes); (v) discards
trash (1-10 seconds); and (vi) exits to lobby.

indicate user’s intentions to sit at a table and thus help
discriminate different classes of users.

Emulating User Behavior. Having manually characterized
the behavioral patterns at the McD, Library, and Cafe hotspots,
we mimic random selections from the recorded behaviors
holding a device running ToGo client. While reenacting, the
dwell times of observed customers are proportionally short-
ened to reduce experimenter burden. We believe our reenact-
ments are reasonably reflective of the original customers.

Prediction Accuracy and Sensor Contribution. We emu-
lated 60, 72, and 48 user behaviors for the McD, Library, and
Cafe hotspots, respectively. Figure 6 presents mean prediction
error over the client dwell time for each hotspot. Again, all
ToGo schemes substantially outperform the Naive (time-only)
scheme. Variants with additional sensors and client feedback
predict the correct dwell class sooner than the NoFeedback
approach (RSSI/bitrate only). In the Cafe test, convergence
time for the NoFeedback scheme is slower than the schemes
utilizing client sensors.

Single User Behavior Prediction. Fig. 7 compares the
prediction accuracy of different schemes for a specific user

trace at McD shown in Fig. 5. In this trace, the user stayed
within the hotspot for about 8 minutes. Hence, an ideal oracle-
like predictor would place the user in dwell class 4 (5 to 10
mins) throughout the 8 minute dwell time. But any practical
scheme needs to observe the user behavior for a while before
converging to the correct dwell class. We chose this particular
trace for comparison since 8 minute dwell time is expected to
be sufficient for a good prediction scheme. In this instance,
the users’ behavior in the first 3 time slots (15 seconds each)
matches closely that of class 3 users. At around 75 sec, this
user picks up the food and moves towards the condiments.
This behavior exhibited by class 4 users is different from
the class 3 users. This results in a class 4 assignment to this
user shortly thereafter. The convergence of NoFeedback to the
correct dwell class is slower than the other schemes.
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Fig. 7. Dwell class prediction for one user at McD. The user stayed in
the WiFi range for ≈8 minutes. ToGo with client feedback converges to the
correct dwell class 4 within 90 seconds.

In the next section, we demonstrate how an application can
benefit from dwell time prediction. While we can imagine
many applications such as multiplayer games mentioned be-
fore, we specifically focus on how traffic prioritization can be
facilitated by ToGo framework.

IV. B2G: AN APPLICATION OF TOGO

We now present an application that leverages dwell time
prediction to migrate would-be 3G traffic onto WiFi networks.



Briefly, by accelerating downloads of soon-to-depart users, less
leftover demand is carried out onto 3G. This section motivates
the application, implements it, and evaluates its benefits.

A. Dwell Prediction to Offload 3G Bandwidth

The rising density of mobile devices, combined with the
availability of 3G data services, severely strains the cellular
network [6]. Subscribers, especially in big cities, are ex-
periencing deteriorating 3G quality, leading to widespread
dissatisfaction. New classes of content-browsing devices, such
as the Nexus 7 and Microsoft Surface, will further heighten
this strain [4]. These devices will not only download more
video and large sized pictures/eBooks, they will also do so
on-the-fly. A student may begin downloading a Netflix movie
while walking from her lab to the campus bus stop; a daughter
may download an eBook while her mother drives out of their
home garage, or picks up dinner from a drive-in restaurant.
Such pervasive downloads explain the projected 39x increase
in mobile data traffic by 2014. The 3x increase in cellular
spectrum will be far less than adequate [11].

Responding to this concern, AT&T has announced an addi-
tional $2 billion investment to make sure it meets the growing
demand for content consumption [19]. Part of this money
will be invested in adding more WiFi access points (APs),
and effectively using them to assist 3G networks [19]. Recent
work has highlighted both the challenges and opportunity.
Notably, Wiffler augments the effective capacity of mobile
3G networks by carefully exploiting WiFi [2]. It targets the
particularly demanding case of vehicular access, where WiFi
coverage is especially spotty. Motivated by this success, we
identify a complementary scenario, applicable to pedestrian
users connecting to a public access point.

Our intuition is simple. Among clients connected to WiFi
hotspots, those likely to crossover sooner to 3G may be
treated with proportionally higher priority. Prioritized traffic
allows for greater data download to the user with short dwell
time, reducing the burden that gets carried over to 3G. By
more-aggressively satisfying mobile data demand during brief
periods of connectivity, it is possible to enhance the return-on-
investment for strategically-placed APs. Thus, airport travelers
arriving at the baggage claim area could be allocated a
larger bandwidth share over those walking towards check-in
counters. Similarly, an iPad user beginning to walk away from
the Starbucks AP can be prioritized over a seated laptop user.
The AP could recognize these patterns from the phones’ sensor
readings, classify users into discrete dwell time categories, and
prioritize them accordingly. Since per-user WiFi throughput
is substantially higher than 3G (e.g., 3Mbps vs. 450kbps),
a minute of WiFi prioritization can be valuable. We call
our system BytesToGo (B2G), based on the observation that
highly-mobile users download more bytes over WiFi before
departing into the 3G network.

B. Potential Gains from B2G

We consider the potential of a B2G service, given an
effective ToGo prediction API on which it could be based.

Just deploying a WiFi AP will substantially offload 3G net-
works – is B2G still necessary? We argue that the improvement
from B2G should not be compared against the gains from
WiFi deployments. B2G may be viewed as a software upgrade
to make better use of WiFi APs, since they may anyway be
installed in large numbers.

Earlier works have studied predictive offloading and hand-
off in cellular contexts [1], [13] and more recently in 3G
and WiFi domains [2], [17]. Is B2G different? To the best of
our knowledge, prior research has broadly focused on macro
level behavior/mobility patterns, profiling how users transition
between cells, encounter WiFi APs, or habitually dwell in
them. B2G may be viewed as an attempt to exploit micro-level
behavior/mobility, particularly via emerging opportunities in
personal sensing and data mining. We believe that micro-
behavior guided networking is relatively unexplored.

How much bandwidth can be offloaded from WiFi to 3G?
The benefits from WiFi prioritization are proportional to
the throughput difference between WiFi and 3G. When 3G
throughput is considerably less than WiFi, a small increase
in WiFi utilization can save considerable channel time on
3G. To characterize this difference, we measured the per-user
WiFi bandwidth inside 8 different stores and 3 homes, and the
corresponding 3G throughput just outside their coverage areas.
Tests were conducted on different phones using a speedtest
application from dslr.net. WiFi measurements were performed
by walking through the hotspot, ensuring that transmission
bitrates were not over-estimated. For 3G measurements, the
user ran the speedtest app when located at the edge of the
WiFi range, and walked away from the hotspot for 30s. Figure
8 reports an average of 6.64x higher TCP throughput over
WiFi than with 3G, encouraging the prospects of predictive
prioritization.

Fig. 8. Across hotspots, WiFi offers almost 6.5× throughput of 3G.

C. Design and Implementation of B2G

B2G supplies the predicted dwell time from ToGo as input
to a Traffic Shaping Module that regulates the inflow of
download TCP traffic from the Internet (see Figure 2). First,
interactive traffic (e.g., VoIP) is identified (say by port number)
and allowed to flow unimpeded at the highest priority. Non-
interactive traffic is isolated by destination into per-client



queues. Each queue is allotted a maximum drain rate as a
function of (1) the hotspot bottleneck bandwidth, (2) the total
number of clients per priority class, and (3) the amount of
spare capacity. Naturally, low-priority TCP sessions get rate
limited, allowing high priority traffic to take a larger share of
the backhaul bandwidth.

Traffic Shaping. The Linux kernel provides support for so-
phisticated traffic classification and rate-limiting. Specifically,
we use the Hierarchical Token Bucket (HTB) queuing disci-
pline. HTB distributes bandwidth according to the specified
ratios up to a maximum cumulative rate, just below the bot-
tleneck bandwidth (after accounting for unshaped interactive
flows). For example, a priority level 2 user is expected to
stay 3 times longer than a priority 1 user. Thus, she receives
bandwidth in a 3:1 ratio to priority one clients. If there were
two priority 2 users, and one priority 1 user, each priority 2
user gets 1

5 th of the capacity, while the priority 1 user gets 3
5 th.

To prevent undue service degradation for low-priority clients,
a minimum bandwidth must be assured before HTB ratios may
be applied. Thus, during periods of especially high contention,
B2G can degenerate itself to regular 802.11.

We used a Linux laptop as an AP and built prediction and
prioritization module on top of Click Modular Router [14]. Ad-
ditionally, our Click module observes bidirectional traffic pat-
terns to feed into our traffic prioritization and shaping engine.
Traffic shaping is conducted using the standard Linux Traffic
Control subsystem. The Linux TC utility provides userspace
hooks for live reconfiguration of the high-performance, in-
kernel packet processing.

D. Performance Evaluation of B2G

Our B2G evaluation focuses on: (1) the effectiveness of
traffic shaping to increase hotspot utilization; and (2) the
amount of 3G bandwidth that can be saved by a B2G AP.
The main findings from our evaluation are:

• Live traffic shaping, with accurate dwell prediction, suc-
cessfully improves hotspot efficiency.

• Trace-based analysis suggests that B2G can save one half
of a 3G channel per AP.

Next, we present our experimental assumptions followed by
detailed performance results.

Traffic & AP. We assume that non-interactive traffic exerts
the majority of the strain on 3G networks. This is already the
case and is likely to get pronounced in future [4], [11]. Clients
will download/upload full length movies, videos, picture-
albums, eBooks, etc. Such types of traffic needs to be (and can
be) offloaded to WiFi. We evaluate B2G with TCP download
traffic in a single-AP system. We believe our approach is
applicable to upload traffic as well as to multi-AP settings
(more in Discussion). We also assume that the B2G AP owner
is willing to provide selective treatment to the mobile clients.

User Demand. We assume that a client’s “appetite” for data
download is limited by the data consumption time, i.e., if a
video takes 1 minute to download and 5 minutes to watch,
the client does not initiate the next download until the end
of 5 minutes. We believe this assumption models common

data usage. Of course, the user might browse the web or send
instant messages while buffering the video. To avoid delaying
these applications, B2G does not prioritize interactive traffic.

We now evaluate the extent to which B2G can reduce 3G
load. We present a live experiment of our complete imple-
mentation, highlighting the effectiveness of our design and
implementation. Then, a trace-based evaluation characterizes
3G savings at scale. We begin by defining the performance
metric next.

3G Time Saved. The 3G savings due to B2G arise from
accelerating the download on WiFi before going to 3G. We
sum the savings of individual users with prioritization, to get
total savings. Let Mu

prio and Mu be the total downloaded WiFi
data (with and without prioritization respectively) for user u.
Then the total 3GSavings are:

3GSavings =
N∑

u=1

(Mu
prio −Mu) (2)

Live Experiment. Using multiple experimenters, we simul-
taneously emulate previously-recorded user behaviors. Based
on live dwell predictions, B2G (Basic+Compass+Light vari-
ant) performs dynamic traffic shaping. This experiment is
performed in the Cafe after training the AP with the Cafe trace
data. The arrival and departure time of mobiles (drawn from
recorded patterns) are as follows (in seconds): (0, 660); (15,
80); (60, 120); (200, 560); (240, 310); and (360, 580). Arrival
and departure times are illustrated in Figure 9. Each arriving
device begins a 100MB HD 720P video download (typical
of YouTube HD videos). The video viewing length is about 6
minutes and 40 seconds. With just one device operating, it took
about 75s to download the video (15 Mbps backhaul capacity).
An experimenter emulating user behavior waits for the viewing
duration of the video and, upon completion, starts another
download of the same size (as if the user watches a series
of videos, selecting the next, once the first completes). The
complete experiment was repeated 3 times with and without
prioritization. Figure 10 presents the results. B2G consistently
achieves higher data transfer for shorter dwell clients, saving
an average of about 55MB of 3G data per run.

0s 200s 400s 600s

Fig. 9. Arrival times and overlap of emulated live user behaviors.

Trace Based Evaluation. To test B2G 3G savings at scale,
we conduct a trace-based evaluation. We consider both HD and
non-HD video downloads. HD video parameters are the same
as in the live experiment. For non-HD, we assume a 5 minute
video at a 320kbps video encoding, with a size about 12MB,
typical of non-HD YouTube videos [7], [10]. User arrival times
are modeled based on real device arrival times obtained from
the tcpdump (Fig. 1). The trace recorded a total of 340
devices, with 40 devices arriving per hour on average. Each
user is assigned a mobility pattern (and corresponding dwell
time) by randomly picking a trace from the McD hotspot. The
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total data downloaded by each class of devices for one hour
is calculated based on the priorities (by extension bandwidth)
assigned by the AP and the total WiFi capacity.

We conduct this experiment for each of our hotspots.
However, in the interest of space (and similar results), we
present 3G savings for only McD in Figure 11. Each data
point reflects the mean of 100 trials. A hypothetical Hindsight
scheme is shown for comparison. Hindsight “predicts” at the
end of the trace with full knowledge of all client dwell times.
For non-HD video, the B2G schemes save almost as much 3G
data as Hindsight, approximately 100 MB/hour. At 3G rates,
this equates to about 30 minutes of 3G channel time saved
per hour, exclusively by prioritization. With HD video, the
benefits of accurate prediction are better, boosting the savings
to 45 minutes for the best B2G variant.
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Fig. 11. 3G data saved per hour by one AP. B2G improves WiFi utilization,
providing significant 3G network savings. Gains increase with larger HD
files. Note that in some cases, RSSI based NoFeedback variant suffices to
differentiate short dwellers.

V. ISSUES AND DISCUSSION

This section discusses a number of issues and open ques-
tions pertinent to ToGo and B2G.

Selecting the Right Policy. As in any form of prioritization,
appropriate policy selection can be complex. In B2G, the
AP owner must weigh the value of 3G bandwidth savings
against quality-of-service for hotspot users. Without real-world
preferences, B2G cannot optimize this tradeoff. However,
traffic shaping parameters provide simple hooks to do so.
Users may be assigned a minimum reservation bandwidth (as

a function of the number of active users), and only the excess
capacity may be prioritized by dwell time.

Energy Overheads. Accelerometer, compass, and light sen-
sor usage incurs some energy cost. However, these sensors
are often used for multiple applications concurrently, with
very little marginal energy cost for additional applications.
Further, for B2G prioritized clients, these costs would be at
least partially mitigated by energy savings on WiFi compared
to 3G. The NoFeedback scheme, passively relying on RSSI
for upload WiFi traffic, does not incur any sensing cost.

What if a greedy user fakes sensor readings to get higher
priority from a B2G AP? Currently do not have a mechanism
to thwart fraudulent sensor measurements. However, without
any self-reported data, the NoFeedback scheme would not be
subject to selfish misbehavior. Further, all schemes could use
a correlation with RSSI data in an attempt to identify cheaters
and punish them with a low priority. We anticipate such an
approach would be sufficient to disincentivize selfish users.

Multi-AP Hotspots. Thus far, we have assumed that ToGo
would be deployed in a small hotspot location (e.g., a cafe)
with only a single AP. In practice, a hotspot may have multiple
APs extending over a larger coverage area. In these circum-
stances, a change of AP association should not be considered
as a departure from the hotspot. ToGo naturally extends to
these environments, especially when a collection of APs are
administered by the same provider, say AT&T. A dedicated
server or cloud application may serve as a network controller,
in the style of the existing enterprise WLAN architecture. APs
forward client feedback reports to the controller, paired with
time, RSSI, and bitrate annotations. The controller performs
training and prediction tasks for all APs in the hotspot.
Aggregation of client data from multiple APs can also improve
training quality. RSSI values for a client from non-associated
APs can serve as additional features for prediction. With this
RSSI feedback, along with knowledge of intra-hotspot AP-to-
AP handoff patterns, the ToGo controller may provide a higher
prediction accuracy than in the one-AP case.

Device Usage. For simplicity, our experiments have as-
sumed that a user walking into a hotspot will have her device
on running the ToGo client. Real behavior will exhibit greater
diversity. Users may, for example, walk into a cafe, order
food, and sit down all before turning on a ToGo-enabled
device. In this case, the AP will have reduced information
available for dwell prediction, possibly leading to increased
error. However, we expect that these behavioral tendencies
may also be learnable over time. Where a user activates her
device may itself be a strong predictor of dwell time.

Alternative Learning Techniques. We chose to implement
ToGo’s prediction engine through SVM. A variety of other
learning techniques such as Hidden Markov Models could
be applied instead. We do not claim that SVMs are ideal,
or our selections of SVM features, and believe it is possible
to improve prediction accuracy through a more exhaustive
evaluation of alternatives. Further, the best learning technique
for prediction might vary across locations. One possibility
for performance improvement is to train multiple machine



learning engines and dynamically select the current most-
successful technique for future predictions.

Would B2G be beneficial even with 4G? The basic premise
underlying B2G is that there exists a significant throughput
difference between WiFi and cellular access technologies.
While cellular network deployments are moving from 3G
to 4G speeds, there are corresponding advances in wireless
networks from 802.11n to 802.11ac. Furthermore, we believe
the main contribution of the paper is dwell time prediction,
which gives valuable information to many applications, of
which B2G is just one illustrative example.

VI. RELATED WORK

WiFi and Cellular. In CellShare [21] a rural WiFi network
benefits from cellular network augmentation. The system al-
lows the use of mobile phones to provide temporary Internet
connectivity when parts of the network are disconnected. A
similar architecture is used in CoolTether [22] to access the
3G network from the laptop using phone WiFi tethering. The
scheme in [23] helps in recovering lost 3G multicast data by
relaying on WiFi among neighboring devices. In MobTorrent
[5], the cellular network is used as a control channel to
predict mobility information and prefetch content. Our work
makes use of WiFi to optimize the traffic offload from 3G.
Wiffler exploits WiFi to reduce the load on 3G in vehicular
networks [2]. Complementary to Wiffler, we are interested in
offloading the 3G traffic onto WiFi during pedestrian hotspot
connectivity.

Mobility Prediction. Macro mobility prediction for cellular
networks is a well-researched area [1], [13], [15], [18]. Bread-
Crumbs [17] is a recent macro-mobility solution that harnesses
habitual nature of human mobility. Based on a per-user history,
Breadcrumbs makes use of a second-order Markov model to
provide connectivity forecasts on which AP associations will
be most useful. Our work complements BreadCrumbs, with a
focus on micro-mobility and user behavior within the range
of a single AP, and attempts to predict dwell time (with an
approach similar to nth-order Markov model). Further, we
aim to capture general behavior trends across clients, allowing
the system to make informed decisions the first time a user
associates to an AP.

Activity Recognition. Activity recognition has become an
active research area in recent years [3], [8], [9], [16] due
to the pervasiveness of sensor assisted phones. In our work,
we build on this approach to capture the user behavior
from phone sensor readings. There have been online-behavior
aware schemes like Profile-Cast [12] but our work deals with
physical-behavior awareness.

VII. CONCLUSION

This paper proposes ToGo, a system for predicting length of
stay at WiFi hotspots, and BytesToGo, an example use case of
the ToGo system. We address the challenge of predicting dwell
time with and without the aid of client sensor data using ma-
chine learning algorithm at hotspot APs. Evaluation over traces
collected from 3 different hotspots and live experimentation

has confirmed ToGo’s prediction efficacy, enabling BytesToGo
to offload substantial 3G/4G data onto WiFi. ToGo is able
to achieve reasonable accuracy without any hotspot-specific
configuration or manual training. Instead, it learns and adjusts
over time, automatically adapting to natural human behaviors.
As part of future work, we plan to explore the other uses of
dwell time prediction, which we believe to be a generic and
valuable primitive across several domains.
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