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ABSTRACT ACM Reference Format:

A rich body of work has focused on motion tracking tech-
niques using inertial sensors, namely accelerometers, gyro-
scopes, and magnetometers. Applications of these techniques
are in indoor localization, gesture recognition, inventory
tracking, vehicular motion, and many others. This paper
identifies room for improvement over today’s motion track-
ing techniques. The core observation is that conventional
systems have trusted gravity more than the magnetic North
to infer the 3D orientation of the object. We find that the
reverse is more effective, especially when the object is in con-
tinuous fast motion. We leverage this opportunity to design
MUSE, a magnetometer-centric sensor fusion algorithm for
orientation tracking. Moreover, when the object’s motion is
somewhat restricted (e.g., human-arm motion restricted by
elbow and shoulder joints), we find new methods of sensor
fusion to fully leverage the restrictions. Real experiments
across a wide range of uncontrolled scenarios show con-
sistent improvement in orientation and location accuracy,
without requiring any training or machine learning. We be-
lieve this is an important progress in the otherwise mature
field of IMU-based motion tracking.
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1 INTRODUCTION

Inertial sensors (IMUs) serve as the bedrock to a large num-
ber of mobile systems and applications. Smartphones and
smartwatches have already utilized IMUs to infer human
activities and gestures, while drones and robots have classi-
cally employed IMUs to guide their motion-stabilization and
control algorithms. More recently, IMUs are playing a role in
everyday objects. A start-up called Grush [1] proposed a fas-
cinating idea that won the “2016 America’s Greatest Makers”
contest. The company tracks the motion of IMU-embedded
toothbrushes and feeds this motion into a smartphone game
where monsters need to be killed. When brushing teeth, a
child must move to different corners of his mouth to kill
the scattered monsters in the smartphone screen. In a more
serious context, health rehabilitation centers are increasingly
giving motion-trackers to patients so their progress can be
monitored even at home. Needless to say, any improvement
to IMU-based motion tracking will impact a range of systems
and applications.

Let us begin by intuitively understanding the core problems
in IMU-based motion tracking. Observe that all the inertial
sensors, i.e., accelerometer, gyroscope, and magnetometer,
operate in their local frames of reference. For instance, if
the accelerometer measures motion along its X axis, it is
not clear what this motion means in the global reference
frame. As an analogy, imagine a friend calling from inside a
flying airplane and saying that she is turning “right”. With-
out knowing the 3D orientation of her plane in the earth’s
reference frame, there is no way to infer which way she is
turning. Put differently, tracking the motion of any object
first requires the knowledge of the object’s 3D orientation
in the global framework. Then, the motion sensed locally
by the IMU sensors can be appropriately projected onto the
global framework, ultimately enabling a meaningful motion
tracking solution.
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Precisely estimating the object’s 3D orientation in the global
reference frame (GRF) is non-trivial. Conventional systems
solve this by utilizing gravity and magnetic North as “anchor”
directions. Loosely, the accelerometer measures components
of gravity along its 3 axes and infers how tilted the object is
from the horizontal plane. Once this tilt is compensated, the
magnetometer can measure the object’s heading angle by
comparing against the magnetic North direction. This indeed
yields the 3D orientation of the object, although only in the
case when the object is completely static. When the object is
moving, the accelerometer measures the “mixture” of both
gravity and linear motion, making gravity isolation difficult.
As a consequence, the object can no longer be tilted precisely
to become flat on the horizontal plane, which further pollutes
the estimation of the magnetic North direction. In summary,
estimating the global 3D orientation of a moving object is the
key bottleneck to IMU based motion tracking. Worse, this
3D orientation needs to be continuously tracked, since local
sensor measurements need to be continuously projected onto
these global directions.

Of course, we are not the first to look into this problem. Many
techniques exist in literature [2-10], of which A3 [11] from
MobiCom 2014 is probably the most effective. Importantly,
A3 actually sidesteps the problem of decomposing gravity
and linear motion from their mixture; instead, it opportunis-
tically searches for moments when the object is static. The
object’s 3D orientation is re-calibrated at these static mo-
ments (using gravity and North), and for all times between
these moments, A® uses the gyroscope to track the local
changes in orientation. Referring back to our analogy, if our
friend from the airplane could periodically stop and tell us
her global orientation, we could utilize her local measure-
ments of “turning right” to interpolate her global orientations
at all times.

Unfortunately, objects may not pause often, and even if they
do, determining those moments produces false positives and
false negatives. All in all, A%’s performance upholds only
in certain types of movements, and even then, some com-
ponents of IMU information remain unused (as elaborated
later).

This paper, inspired by A®, finds room for improvement. Our
core insight is that the earth’s 3D magnetic North vector could
serve as a better global “anchor” than gravity, especially
during motion. This is because magnetometers are mostly
unpolluted by the device’s motion, and as a result, can al-
ways measure the magnitude of the global 3D North vector.
The direction is still unknown since it is a function of the
object’s own orientation. Nonetheless, if we can measure
the direction of this North vector just one time, we can uti-
lize it thereafter as a trusted anchor for tracking orientation,

even when the object is moving. Gravity is still necessary,
but only as a secondary anchor to complete the orientation
estimation.

This sensor fusion opportunity ultimately results in MUSE,
an iterative algorithm that uses gravity from a static moment
to estimate the global 3D North vector, and thereafter, uses
this North vector as the primary anchor. Gravity is still used,
although with varying trust, depending on whether the ob-
ject is moving. Finally, the gyroscope measurements are also
used to track rotation, and then fused with the accelerometer
+ magnetometer measurements to overdetermine the system.
The net result is improved 3D orientation in the global refer-
ence frame (GRF), in turn helping the localization aspect of
motion tracking.

Finally, when the object’s motion is restricted (i.e., it does
not span all the 6 degrees of freedom), the mixture of grav-
ity and linear motion can be better decomposed from the
accelerometer. This is because the space of possible move-
ment is now restricted, allowing for better guesses on how
the mixture may be formed. We exploit this opportunity as
well by jointly estimating orientation and location from the
same accelerometer data (as opposed to determining orienta-
tion first and then inferring linear motion). To this end, we
feed all sources of IMU information into a Bayesian frame-
work — an augmented particle filter — that will ultimately
overdetermine the system, and output both 3D orientation
and location in the global reference frame.

We implement and evaluate MUSE on two off-the-shelf plat-
forms: (1) a Samsung Galaxy S6 smartphone, and (2) a Sam-
sung Gear Live smartwatch. Orientation tracking is evaluated
across various human activities and object motion. Ground
truth is obtained by periodically bringing the device to a
pre-specified orientation. Comparison with A*> shows an av-
erage of 2.9X performance gain for various natural activities,
and higher when the motion is continuous without pauses.
We also ask humans wearing the smartwatch to move their
hands normally, and jointly track the watch’s orientation and
location in an online manner. Ground truth from Microsoft
Kinect reveals a median location error of 8.8cm, better than
the state-of-the-art method that requires full future data for
offline decoding.

We summarize MUSE’s contributions in 2 parts:

e Part I identifies that the global 3D magnetic North vector can
serve as a better anchor compared to gravity, and utilizes it
for tracking the 3D orientation of a moving object.

e When motions are restricted, Part II designs a particle filter
based technique that jointly estimates location and orienta-
tion, as opposed to estimating them serially (i.e., orientation
first, and then location).



The rest of this paper elaborates on each of these contribu-
tions, however, we need to begin with the foundations of
IMU based motion tracking. While this makes the next sec-
tion long, we believe the material is necessary to appreciate
the problems and solutions. We also believe the material is
easy to follow, since it starts from first principles.

2 FOUNDATIONS OF TRACKING

B Reference Frames: Consider the general case where an
object’s motion, i.e., sequence of 3D locations and 3D orien-
tations, needs to be tracked in a global reference frame, say
(North, East, and Up). The sequence of 3D locations, when
differentiated twice, gives acceleration; the accelerometer
measures this acceleration, but in its local reference frame
(LRF). The sequence of 3D orientations, when differentiated
once, gives angular velocity; the gyroscope measures this
angular velocity, but again in the LRF. Tracking 3D motion
in the global reference frame (GRF) requires a continuous
translation between the two coordinate frames. Specifically,
at every time instant, the object’s LRF needs to be rotated
and aligned to the GRF, and the acceleration needs to be
computed in this aligned framework. Thus, the first ques-
tion in tracking degenerates to constantly estimating this
LRF-to-GREF rotation.

B Understanding 3D Orientation: The LRF-to-GRF ro-
tation is essentially the phone’s 3D orientation. To under-
stand, consider a plane taking off in Figure 1, with its true
3D heading direction as 45° North-East and 30° to the ver-
tical direction. However, for a passenger inside the plane,
the heading direction is always along its local Y axis. Thus,
computing the global heading direction entails rotating the
plane —30° around its local X axis (which is along the wing
of the plane), and then rotating the plane —45° around its
local Z axis. These rotations align the local and global axes,
capturing the orientation mismatch between the LRF and
GRF. Mathematically, this net mismatch can be modeled as a
single 3D rotation matrix, and the inverse of this matrix (i.e.,
the mismatch from GRF to LRF) is defined as the object’s 3D
orientation.

B Computing 3D Orientation: In reality, how would a
passenger inside the plane compute its global heading di-
rection? One opportunity is to measure quantities, such as
gravity and magnetic North, whose directions are univer-
sally known in the global reference frame (GRF). Specifically,
an accelerometer would be able to identify that the universal
gravity vector is tilted by 30° from its local —Z axis. Similarly,
a magnetometer (or compass) should be able to recognize
that the Earth’s magnetic North direction is offset by 45°
from its local Y axis. Thus, using local measurements of grav-
ity and North from the accelerometer and the magnetometer
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Figure 1: The top view (left) and side view (right) of a
plane taking off. The 3D orientation of the plane is the
net rotation needed to align the plane’s local (X, Y, Z)
axes with the global (North, East, Up) axes.

respectively, an object should be able to compute its own
LRF-to-GRF mismatch, which is exactly the 3D orientation
of the object!.

M Basic Motion Tracking: Now, tracking the object’s 3D
orientation over time can be achieved in two ways: (1) per-
forming the above LRF-to-GRF alignment (using gravity and
North) at every instant of time, or (2) performing the align-
ment once to get initial orientation, and then integrating
the gyroscope data thereafter to obtain subsequent orienta-
tions. Tracking the object’s 3D location over time is slightly
more involved. For each time step, the object’s 3D orienta-
tion needs to be estimated and the accelerometer data needs
to be projected to this global reference frame. This projected
accelerometer data contains both linear acceleration and a
gravitational component (Figure 2(a)). After removing grav-
ity, linear acceleration is now double integrated to compute
the next location. The orientation and location estimation
process together repeats for every time step, ultimately pro-
ducing the 3D orientation and 3D location of the object at
any given time.

2.1 Why Theoretical Tracking Falls Short

The above tracking method, although conceptually complete,
does not scale to real world situations. We discuss 3 main
issues:

(1) Gravity Pollution: In describing how the accelerometer
uses gravity to compute its vertical misalignment, we need
to assume that the object is static. Otherwise, the object’s
motion will mix with gravity measurements, yielding an
incorrect tilt. Put differently, computing the vertical tilt of a
moving object is difficult.

INote that only gravity or only North is inadequate for determining 3D
orientation. For instance, even if gravity is perfectly aligned along the —Z
axis, the object can still be in many possible orientations on the horizontal
plane (with different heading directions).
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Figure 2: (a) Accelerometer projected to GRF contains
both linear acceleration and gravity. (b) Take a static
object as an example, projection with correct orienta-
tion removes gravity perfectly, making no errors in
linear acceleration, but (c) slight offset in orientation
can cause large projection error, leading to wrong lin-
ear acceleration.

(2) Magnetic Interference: In indoor environments, mag-
netometer measurements of the earth’s magnetic North can
be polluted by nearby ferromagnetic materials. This again
derails the estimate of 3D orientation, impacting 3D location
as well.

(3) Inherent Sensor Noise: Finally, hardware noise is in-
herent in all IMU sensors. Any integration operation accumu-
lates this noise and the problem is pronounced for location
tracking with accelerometers. This is because accelerome-
ters need to be integrated twice to obtain location, and fur-
ther, any orientation error directly translates to accumulated
location-error over time. Gyroscopes also drift but relatively
less since they require a single integration. Magnetometers
do not drift but experience a random high frequency noise
in their measurements.

We emphasize again the perils of 3D orientation error on
location. Observe that the accelerometer data would get pro-
jected erroneously from LRF to GRF (Figure 2(b) and 2(c)),
and as subsequent velocities and locations get computed in
GRF (using single and double integrations), the error will
diverge over time. The analogy is in orienting a gun slightly
off from the direction of the target — the margin by which
the bullet misses the target increases with the distance of
the target from the gun. Thus, precisely estimating 3D ori-
entation is crucial and challenging, especially for a moving
object in an indoor (ferromagnetic) environment.

With this background on practical challenges, we zoom into
today’s techniques and distill the room for improvement.

2.2 State-of-the-Art Method

Classical motion tracking spans control theory, robotics, sig-
nal processing, graphics [9, 10], and is difficult to cover in
the interest of space. The recent work called A® [11] from
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Figure 3: The magnitude of accelerometer measure-
ment vs. the constant magnitude of gravity, as a user
picks up a phone in hand and starts running. Clearly,
the accelerometer cannot measure gravity properly in
this case.

MobiCom 2014 is perhaps the most practical solution today.
As mentioned earlier, A3 recognizes that accelerometers mea-
sure the mixture of gravity and motion; that isolating gravity
is difficult; and that 3D orientation is difficult to estimate.
In light of this, their proposal is to identify opportunities
when gravity measurement is unpolluted. This happens in 2
cases: (1) when the object is static, or (2) when the object is
in pure rotational motion (i.e., only rotating but not moving).
In both these cases, the accelerometer only measures gravity,
allowing for estimating the global orientation.

The static case is easy to detect, but for pure rotational mo-
tion, A®> showed that the gyroscope measurement correlates
well with the accelerometer data, since gravity will spin simi-
larly in the object’s local reference frame. Falling back to the
plane analogy, consider Alice sitting inside a plane that is not
moving but only spinning in the air (and assume Alice has
a gyroscope in her hand). Also assume that Alice can track
how the direction of the sun is changing (perhaps because
the plane is made of transparent glass). A®> points out that
Alice would see the sun spinning around her, and this spin
should correlate with the spin measured by her gyroscope.
However, if the plane was both spinning and moving linearly,
the correlation would break down. Thus, strong correlation
is an indication of unpolluted gravity, offering an opportu-
nity to align LRF to GRF, and ultimately infer the device’s
3D orientation.

We believe that A? is an elegant contribution, however, the
shortcoming is that such opportunities are infrequent. Figure
3 shows a case of running, where the accelerometer mag-
nitude is constantly varying. Given running activities can
easily last for far longer time durations, A> may not be able
to utilize the pausing opportunity at all. For many real-world
movements, the state of “rotation but no acceleration” also
occurs rarely — for the running case in Figure 3, as well
as many other evaluated later, we did not find a single op-
portunity. As a result, 3D orientation tracking still remains
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Figure 4: MUSE processing pipeline: The IMU data is processed in stages to compute the 3D orientation in the
global reference frame. The gyroscope is integrated to provide 3-DoF information on orientation, while the mag-
netometer produces extra information on 2 DoFs. These two sources of information are fused in a complementary
filter. The accelerometer is opportunistically used to refine 3D orientation. A one-time initialization step is neces-
sary to bootstrap the system, during which the initial orientation and the 3D magnetic North vector are computed.

an elusive problem, hindering accurate location tracking.
In light of this, we present our proposal on magnetometer
fusion, MUSE.

3 PART I: ORIENTATION ESTIMATION

This section designs improvements to 3D orientation esti-
mation. Note that A*> and prior methods have always viewed
gravity as the primary “anchor” for estimating orientation,
and since gravity gets mixed with linear motion (in the ac-
celerometer), it is difficult to extract a precise global orienta-
tion. We break away from this approach and observe that 3D
magnetic North vector can be a more effective anchor. The
advantage arises from magnetometers being unaffected by
linear motion of the object. However, the tradeoff is that the
intensity and direction of magnetic North may vary across
locations (unlike gravity). In light of this, MUSE requires the
object to start from a static moment, utilizes the unpolluted
gravity to precisely estimate the 3D North vector, and there-
after uses the North vector as the anchor for orientation. We
elaborate the algorithm next.

3.1 MUSE Overview

Figure 4 shows the MUSE orientation estimation pipeline.
IMU data (accelerometer) from the initial static time window
offers unpolluted gravity, used to determine the vertical tilt of
the object. The magnetometer, on the other hand, measures
the 3D magnetic vector in its local reference frame (LRF), and
projects it to the horizontal plane to compute the object’s
heading. These two anchors together fully determine the
3D orientation of the object in the global reference frame

(GRF)?. Now, once this initial 3D orientation O(t,) is known,
the current magnetometer’s local measurement, NE (ty), can
be projected back onto the GRF, leading to the global 3D
magnetic North vector, NC. This gives us the anchor we
need:

N = O(to)N*(to) (1)

As the object starts moving, the magnetometer tracks N°
in its LRF, leading to 2 DoFs (degrees of freedom) of global
orientation. In a parallel thread, gyroscope tracks all 3 DoFs
of rotation. Together, this is an overdetermined system, with
5 DoFs of information available for 3 DoFs of changing orien-
tation. To avoid pollution from linear motion, gravity estima-
tion will be opportunistically used when the object stops or
moves slowly. Thus, our task at hand is to solve this overde-
termined system via sensor fusion.

3.2 Magnetometer + Gyroscope Fusion

Since gyroscopes measure changes in 3-DoF orientation, and
magnetometers measure 2 DoFs of global orientation (which
is N G) directly, the two sensors can be combined to better
track (2 DoFs of) orientation. Thus, while gyroscope drift
accumulates over time, the magnetometer can be used for
recalibration (achieving better noise properties than either
of the individual sensors). We use the complementary filter
for this combining operation.

%In other words, roll and pitch angles are computed from gravity, while the
yaw angle is computed from compass. This is a standard operation, which is
also implemented by the Android SensorManager.getRotationMatrix() API:
https://android.googlesource.com/platform/frameworks/base/+/master/
core/java/android/hardware/SensorManager.java
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To elaborate, assume that at current time ¢, the actual ori-
entation of the object is O(t). O(t) is a 3X3 rotation matrix
that rotates the object’s GRF to LRF, and is not known to
the object. Since the magnetometer measures the (constant)
global 3D magnetic North vector N in its local reference
frame (LRF), we can write its local measurement at time ¢ as:

NE(t) = 071 (+)NC (2)

Where O71(¢) denotes the inverse of O(t). Of course, we
don’t know the actual orientation O(t), and our current es-
timated orientation, O(t), derived from the gyroscope, may
be erroneous. One way to check how large this error would
be, is to use estimated orientation O(t) to infer what the

magnetometer should measure (as N L(t)), ie.,
N'(t)= 0" ()NC 3)

~L
The difference between the inferred measurement N (), and
the actual magnetometer measurement N (¢), immediately
reveals the drift in orientation?, as illustrated in Figure 5.
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Figure 5: Magnetometer measures a globally constant
vector, which helps correct the drift of orientation, re-
flected as the disparity between the inferred magne-
tometer measurement and the actual measurement.

B Now, how do we update orientation estimation us-
ing this disparity? The key observation here is that the
noise properties of magnetometers and gyroscopes are dif-
ferent, allowing for informed sensor fusion. Specifically, gy-
roscopes exhibit a long-term integration drift that grows
with time?, however, in the short term, it is quite accurate.
Magnetometers, on the other hand, have short-term noise
from environmental fluctuations and sensor imperfection,
however, do not drift in the long run since they are always
measuring the same global North vector and no integration
is needed. To fuse the best of both sensors, we employ a
complementary filter [6-8].

3To be precise, it reveals the drift in 2 of the 3 DoFs of orientation (the DoFs
parallel to the 3D North vector direction).

4This is because the gyroscope is an inertial sensor that measures angular
velocity in its local frame of reference, and has no opportunity to correct
its own integration.

The complementary filter essentially computes a weighted
combination of the two. Larger weight is assigned to the
gyroscope, so that high frequency components are drawn
from the gyroscope (since the gyroscope drifts less in the
short term), and low frequency components from the mag-
netometer (since it is stable in the long run). The net output
is a single orientation at each time instant — the estimate of
3D orientation in the GRF. Specifically, we first look for a
delta rotation matrix (AR) that can align our inferred magne-

tometer measurement (N L(t)) to the actual one (N (t)):

Rotation Axis e = NL(t) x NE(¢) (Cross Product)

Rotation Angle 0 = L(I\AIL(t), NE(@)
AR = AxisAngle2RotMat (e, 0)

The inverse of this rotation matrix (i.e., AR™!), when applied
to our orientation estimation, will eliminate this disparity.
Since we adopt a complementary filter design to reduce noise,
we set a small coefficient a (0 < a < 1) for this operation,
ie.,

AR(a) = AxisAngle2RotMat(e, 20) (4)
And the updated orientation is
Onew(t) = AR () - Oola(t) ®)

As a technical detail, we are using axis-angle and rotation
matrix representation of rotation, rather than Euler angles
(roll/pitch/yaw), in order to avoid gimbal lock and +180°
ambiguity. In our implementation, we simply set & as 0.01.
The final result from this filter is the convergence on 2 DoFs
of orientation, while the 3rd DOoF, i.e. rotation around the 3D
magnetic North vector, is still tracked but prone to drift.

3.3 Implementation Details

We briefly mention a few details here.

Gyroscope Bias: IMU sensors are known to have bias (DC
offset), among which gyroscope bias harms orientation esti-
mation the most (because of integration). At the initial static
moment where we perform one-time initialization of track-
ing, we also calibrate the bias by taking a time average of
gyroscope readings, and remove the bias from subsequent
gyroscope measurements.

Static Recalibration: Even though MUSE addresses the gy-
roscope drifting issue (due to integration) in 2 of the 3 DoFs
of orientation, there is still 1 DoF whose error cannot be
corrected during motion. Therefore, MUSE also opportunis-
tically detects static or slow-moving opportunities (by look-
ing at time windows in which the accelerometer measures
roughly 9.8m/s?), if any, to address the drift in this dimen-
sion. Unlike A® which simply replaces current orientation



estimation with the one from gravity + North, we again use
a complementary filter to update the estimation, which turns
out to be more robust to accelerometer noise and have less
false positives. We also leverage this opportunity to update
our estimation of the 3D magnetic North anchor, N G,

Magnetometer Accuracy: MEMS magnetometers in mo-
bile devices typically have lower resolution than accelerom-
eters and gyroscopes. Luckily, we do not require as high
resolution for magnetometers as for gyroscopes, because we
are integrating the gyroscope readings but averaging the
magnetometer readings (using the complementary filter).
However, there might be ferromagnetic materials in the en-
vironment. Depending on the error distribution, in certain
cases, it might be even better not to use the magnetometer.
We evaluate the sensitivity of the algorithm to magnetic field
fluctuations in the next section, and leave further investiga-
tion into the future work.

In sum, Algorithm 1 below shows the high-level pseudo code
of MUSE’s orientation estimation algorithm.

Algorithm 1 MUSE Orientation Tracking

1: Opportunistically detect initial orientation and global
3D magnetic North anchor, using Equation (1)

2: while True do

3:  Integrate gyroscope to obtain new orientation

4 if Accelerometer roughly measures 9.8m/s® then

5 Recalibrate orientation estimation, and

6: Update 3D magnetic vector estimation

7. else

8 Update orientation using Equation (3) - (5)

9:  endif

10: end while

We evaluate the accuracy of orientation estimation next,
before proceeding to location tracking.

4 ORIENTATION EVALUATION

4.1 Experiment Design

M Platform and Test Scenarios: MUSE uses the raw IMU
data from a Samsung Galaxy S6 smartphone. It includes
an InvenSense MPU6500 6-axis accelerometer + gyroscope,
and a Yamaha YAS537 3-axis magnetometer. The same chips
are also embedded in many other mobile and wearable de-
vices, including other phone models (iPhone 6s, Amazon Fire
Phone, Samsung Galaxy S5, Samsung Note 5), tablets (Kindle
Fire HD), smartwatches (Samsung Gear Fit), VR headsets
(HTC Vive, Oculus Rift), gaming controller (Oculus Touch,
Steam Controller), etc. Tracking various motion patterns is
of interest, for both humans and things. For humans, we be-
gin with controlled activities, like pure linear motion, pure

rotation, and their mixtures. Then, we generalize to real-
world natural motions, including running, eating, basketball,
gaming, etc. For these activities, we recruit volunteers to
carry/wear the phone in different positions, such as in-hand,
wrist, arm, and legs. We do not offer any guidance to vol-
unteers; they perform the activities completely naturally.
Finally, for object motion, we insert/paste the phone on vari-
ous “things”, including tennis racquets, soccer balls, bicycle
wheels, etc.

B Metric: Our main metric of interest is 3D orientation error
of the phone. Observe that this error need not be shown as
separate errors around X, Y, and Z axes, respectively, but
can be shown as a single orientation error (i.e., the mini-
mal amount of rotation needed to align the estimated 3D
orientation to the ground truth 3D orientation). Of course,
this brings the question of determining the ground truth
orientations.

B Ground Truth: MUSE adopt A*’s technique of measur-
ing orientation ground truth. We first start by placing the
phone at a known orientation, using a printed protractor;
then use the phone for the test motion or activity; and then
bring back the phone to this known orientation. Since this
end point is naturally a static moment for MUSE’s recali-
bration, we deliberately pause our algorithm and only use
gyroscope integration for the last few seconds of motion.
This ensures that the true motion tracking error is measured
(without an artificial orientation reset at the end). Finally,
since many of our motion tracking sessions will be long (5+
minutes), we will periodically bring the phone to the ground-
truth orientation, pause, and then continue natural motion
again. However, we will not use these artificial pauses for re-
calibrating 3D orientation, but only to measure the ground
truth at intermediate points during motion. This will offer
insights into the intermediate moments while motion is in
progress.

B Comparison Baselines: Last but not least, we will com-
pare MUSE’s performance against 3 other techniques. (1)
A3 from MobiCom 2014; (2) GyroOnly, indicating rotation
estimation from 3-DoF gyroscope integration alone, with
no gravity or magnetometer; and (3) ComplemFilter, indi-
cating the traditional use of complementary filter for IMU
sensor fusion, which constantly combines gyroscope inte-
gration with the estimation from gravity + North. Across all
these cases, the algorithms are executed in MATLAB, using
the same IMU data supplied by the SensorManager API from
Android.

4.2 Results

We begin with the discussion on basic (controlled) motions,
and then evaluate natural activities and gestures.
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Figure 6: Orientation tracking error for three basic controlled motions: (a) pure translation, (b) pure rotation, and

(c) mixtures of translational and rotational motions.

Basic Controlled Motions

Figure 6 plots 3D orientation error for pure translation, pure
rotation, and mixtures of translational and rotational mo-
tions. For pure translation, the phone is continuously moved
in different straight-line directions (not necessarily horizon-
tal or vertical, but other possible diagonal lines). For pure
rotation, the phone is located at roughly the same position,
but rotated around various axes (not just X, Y, and Z). For
instance, the phone could be rotated around an axis defined
by the vector V=X+Y) Finally, for motion mixtures, we
perform random actions involving both linear and rotational
motion.

MUSE consistently performs well, while other techniques
falter in some scenario or the other. Complementary filter, for
instance, gets affected in the presence of translational motion
since gravity is polluted. Gyroscope integration incurs error
when phone rotation is dominant. Finally, A® is relatively
better but still considerably worse than MUSE due to the
lack of static moments for resetting orientation. In other
words, the strong trust on magnetometer serves MUSE well
in estimating the phone orientation.

Figure 7 compares the overall CDF of 3D orientation error
across all controlled scenarios. While A% performs better than
GyroOnly and ComplemFilter, MUSE exhibits a consistent
improvement over A’ (3.5X gain at median and 4X gain at
90th percentile), closing in the gaps for IMU based motion
tracking.
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Figure 7: Overall orientation error CDF for controlled
motions.

Natural Human and Object Motions

Figure 8 plots orientation error across various natural move-
ments of humans and objects. For instance, an object motion
like “Tennis” refers to the phone taped on the strings of
the tennis racquet and a user pretending to play with it;
the “Ball” refers to a user playing with a ball with a phone
tightly pasted to it. Evident from Figure 8, MUSE outper-
forms the other methods almost across all activities. A® is
comparable when the motion is naturally slow such that
the accelerometer pollution is not excessive (e.g., eating); or
when the motion has natural pauses (e.g., 3D mouse); but
falls short when the motion is continuous and without stops.
On average, MUSE achieves 2.9X smaller orientation error
than A®. As for GyroOnly and ComplemPFilter, the mixture
of linear and rotational motion in natural activities affects
their performance.

Finally, Figure 9 plots a sample trace of the 3D orientation
error over time to demonstrate how the error can grow if
A3 is unable to find adequately frequent pause moments,
or makes mistakes in identifying them. In contrast, MUSE
maintains a low error, mainly due to magnetometer noise
and the gyroscope’s drift.

4.3 When Will MUSE Fail?

Hl Rotation Only in 3rd DoF

Utilizing the 3D magnetic North vector as an anchor, MUSE
provides an overdetermined system in 2 of the 3 DoFs of
orientation. This means that MUSE will not be useful, if the
object’s rotational motion happens to be only in the 3rd DoF,
i.e. the object is exactly rotating around the global anchor
direction (and will not change its axis of rotation thereafter).
Of course, this rarely happens in practice, and even if it
does, any static recalibration opportunity will mitigate this
problem.

H No Opportunity for Initialization

While methods such as A® rely on frequent “pauses”, MUSE
gets rid of this assumption but still needs one static moment
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Figure 9: A sample trace of orientation error over time
for different techniques. Intermediate ground-truth
probing happens every half a minute, and the device’s
motion pauses on purpose every 1.5 minutes (for re-
calibration).

to bootstrap the tracking. If there is not even a single pause
or slow-moving moment from the beginning, then MUSE
will not be able to find an opportunity to compute initial
orientation and the 3D magnetic North anchor.

B Ferromagnetic Materials

Since MUSE relies on the magnetic North vector as a global
anchor, it would degrade in performance when the magnetic
interference is strong (which is also the case for other sys-
tems). While deeper treatment is necessary in the future, we
bring MUSE to more challenging environments to test its
sensitivity to ferromagnetic materials.

Figure 10 shows the orientation tracking accuracy when
we run MUSE at different places, ranging from outdoor and
large indoor open space (with least interference), to crowded
engineering buildings and labs with lots of computers and
cables (with strongest interference). Each dot in the figure
represents one trial, and its X value describes how fluctuated
the magnetic field is. We measure the X value by moving
and rotating the device around in this area, and taking the
standard deviation of the magnitudes of magnetometer mea-
surements. Clearly, MUSE’s performance decreases as the
magnetic field density variation increases. Techniques such
as magnetic field profiling may help mitigate this issue — a
topic we leave to future work.
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Figure 10: MUSE’s tracking accuracy as it runs at differ-
ent places with varying levels of magnetic field fluctu-
ations.

With the MUSE orientation tracking in place, we now turn
to tracking the location of an IMU sensor.



5 PART II: LOCATION ESTIMATION

The general problem of 3D location tracking is much harder
compared to 3D orientation. This is fundamentally because
there is no notion of a “location anchor’, precluding the IMU
device from knowing how far it has diverged from truth. Thus,
any location error continues to accumulate without bounds
(unlike orientation where gravity and magnetic North helps
to reset the error). To elaborate, consider the steps for com-
puting location at any given time: (1) the accelerometer data
must be projected to the global reference frame (GRF) using
the current estimate of orientation; (2) gravity must be re-
moved; and (3) only the linear motion component must be
double integrated. If the GRF projection or gravity removal
is slightly imperfect, or if the accelerometer has hardware
noise, the double integration operation will amplify the error
over time. Again, there is no way to reset this error.

While this is true for general 6-DoF motion (i.e., the object
can move and rotate freely in any manner), opportunities
emerge when the motion has restrictions. A simple example
of restriction is as follows: a human’s elbow location must
always lie on the surface of a sphere centered at the shoulder.
If such restrictions can be modeled, then it could serve as a
framework to evaluate our location estimates. For instance,
if the elbow’s estimated location diverges from the spherical
surface around the shoulder, then we have the opportunity
to recalibrate. This is the core insight for the rest of this
paper. We will show that motion models can help to overde-
termine the location estimates (much like orientation), and
thereby, location and orientation can be jointly estimated for
such movements. Thus, MUSE will not compute orientation
first followed by location, rather, feed all the available IMU
information and motion models into a Bayesian Particle Fil-
ter framework, to simultaneously extract out 3D location
and 3D orientation.

To ground our technique in a concrete application, we will
track a user’s wrist location using IMU data from her smart-
watch, and motion models of the human arm. ArmTrak [12]
in MobiSys’16 adopts arm-motion models to solve this prob-
lem, however, uses A3 to estimate orientation first, and then
infers location. Further, ArmTrak relies on full offline data to
perform motion tracking. MUSE is different in its core mag-
netometer based orientation module, as well as in the joint
estimation of orientation and location. Finally, we believe
our technique generalizes to many other motion models.

5.1 Arm Motion Model

We adopt a classical limb motion model [12-14], illustrated
in Figure 11. Assuming the torso is static, the watch (on
wrist) motion is actually controlled by shoulder and elbow
joints that lie in a 5-DoF space. The 5-DoF motion can either

External Rotation Internal Rotation

Flexion &= Abduction

Extension

Flexion Pronation

Extension

Figure 11: Arm motion model borrowed from [13].

be viewed as 3 DoFs from upper arm rotation + 2 DoFs from
forearm rotation (Figure 11), or as 3 DoFs from watch orien-
tation + 2 DoFs from watch location (due to fixed forearm
and upper arm lengths). Moreover, due to the nature of joints,
muscles, and ligaments in humans, arm motion is restricted
to certain ranges, called range of motion (RoM) [12, 14]. For
instance, a human cannot twist her forearm by 360°, and
elbows cannot bend beyond 180°. We use the same RoM as
being used in ArmTrak. DoF + RoM together determine the
motion model.

5.2 System Overview

Given the coupling between orientation and location, jointly
estimating them is the correct approach to fully utilize IMU
data and the motion model. However, the key issue is the
following: On one hand, jointly tracking the space of 5 un-
knowns (state variables) is prone to divergence, while also
being computation heavy. On the other hand, separately es-
timating orientation and location, such as ArmTrak, reduces
complexity but at the expense of accuracy.

To mitigate this issue, we propose a different approach. Fig-
ure 12 shows our system design. We first use MUSE to esti-
mate the orientation of the IMU sensor. Among the 3 DoFs
of orientation, 2 of them will be drift-free. The remaining
1-DoF orientation, together with the 2 DoFs of location, is
to be estimated from the 3 DoFs of the accelerometer. We
then ask the following question: what sequence of watch ori-
entations and locations will cause gravity and linear motion
to (vectorially) add up in a way that matches the accelerome-
ter measurements? This motivates our particle filter design,
explained next.

5.3 Joint Tracking via Particle Filter

Figure 13 shows a simple, one-step example to illustrate the
basic idea. The smartwatch was previously at location L(t—1),
and now arrives at location L(t) at time t. We have some
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Figure 12: System overview for joint location and ori-
entation tracking. Orientation estimation from MUSE,

as well as the accelerometer data, is sent to the particle
filter for joint tracking.

uncertainty over our current orientation estimation, O(t),
most likely due to gyroscope integration drift that causes
1-DoF errors (i.e. uncertainty on the rotation that is around
the magnetic North direction). If we aim to track location,

Al A2
then different orientation estimates, say O (t), O (t) and
~3 . . .
O (t), will project accelerometer data differently. Assume

éz(t) is the correct orientation — it will project accelerome-
ter data correctly, using which the location estimation will
also be correct, and the location will always stay in the valid
location space (i.e., satisfying 5-DoF space model and arm
range-of-motion constraints). On the other hand, a wrong

orientation, for example Ol(t), will make mistakes in pro-
jecting the accelerometer, eventually making the estimated
location fall outside of the valid location space. In sum, due
to lower dimensionality of the valid location space, we now
have the opportunity to understand and possibly correct
orientation drift from accelerometer, even under motion.

Of course, the above is an over-simplified example. In reality,
the past locations are not known a priori and have to be
estimated, and the valid location space depends on smart-
watch orientation. Therefore, given this highly non-linear
state space, we model each possible (orientation, location)
trajectory as a particle in the particle filter. Our hope is that,
particles with wrong orientations will exhibit diminishing
weights (or probabilities) and eventually get removed. Par-
ticles that are left behind are more likely to be good joint
estimators of both orientation and location. We detail the
particle filter construction below.

B State Space: We define each particle as a vector, com-
posed of the 3 recent watch location estimates (L), as well as
an angle that models the orientation drift around magnetic
North vector at the previous time (5).

(i-th particle) X' = [L'(t) L'(t - 1) L'(t - 2) §'(t - 1)]

B Weight Updating: A good estimate of the state should
be such that (1) it lies in the valid location space, and (2) it
matches the accelerometer measurements well. Therefore,
we can evaluate how good each estimate (particle) is, by

Valid
< Location

@ Q Space
L(t—1) L(t) Qx
t-1 t t+1 Time

Figure 13: A illustrative example of how incorrect ori-
entations lead to bad location estimations.

comparing the accelerometer sensor readings with the “in-
ferred” acceleration from the particle’s location trajectory.
In physics, (for the i-th particle) the global acceleration of
the watch can be approximated by:

d?Li(t-1) L'(t)-2L'(t-1)+L'(t - 2) .

ez At? ©

On the other hand, we get global acceleration measurement,
by projecting accelerometer data with estimated orientation
and removing gravity afterwards. Specifically, at each time
MUSE outputs an estimated orientation, O(t — 1), which may
have a drift around the magnetic North vector. Each particle

tries to calibrate that drift by adding its own drift estimation
Si(t—1):

O'(t—1) = AR5 (t - 1)) x O(t — 1)

After that, each particle uses its own calibrated orientation,

Ol(t — 1), to estimate the global linear acceleration (by pro-
jection and removing gravity):

d2Li(t - 1)

dr?

Observe Equation (6) and Equation (7): one is (inferred)
global acceleration from the particle’s location triple, and
the other one is global acceleration from the particle’s (drift-
corrected) orientation projection. A converging system state
should have minimal difference between these two terms.
We model this by assigning weights to particles, where the
weight is a zero-mean Gaussian probability density function
on their difference.

=éi(t—1)~accel(t—l)—[0 0 gravity]T (7)

B Re-sampling: We resample at each step so that particles
are more concentrated to the ones with higher probability
(i.e., better fitted to accelerometer measurements). Particles
with higher weights are likely to get multiple copies, allowing
the system to focus on the more-likely state trajectories.

B Prediction: As t — t + 1, the particle filter updates itself
with the following two steps: First, it takes the averaged drift
correction across all particles, S(t — 1), and use it to calibrate
MUSE output, before it proceeds to the next timestamp. All



particles will thereafter reset their drift correction, §'(t — 1),
to a new small Gaussian random number. Second, as time
proceeds, the location triple should simply be updated as
well.

Li(t-2) « Li(t-1)
Li(t—1) « L(t)

L'(t) « (A random point from valid location space)

Note that the new watch location, Li(t), is a point randomly
selected from the valid location space in order to preserve
diversity of the system. For each particle, the valid location

space is conditioned on its predicted orientation (o} (t), which
we have predicted using MUSE’s output O(t) and calibrated
at the prediction step. We also restrict L'(t) not to be far
away from Li(t — 1).

To improve the speed of the particle filter, we aggregate
every K samples together, so the particles are updated and re-
sampled every KAt seconds. K serves as a tuning parameter
to balance computation and latency, and we empirically set
KAt to 0.1s, corresponding to 10Hz system update frequency.
We are now ready to evaluate the accuracy of this tracking
algorithm.

6 LOCATION EVALUATION

6.1 Experiment Design

M Platform and Test Scenarios: We run our algorithm us-
ing raw IMU data collected from Samsung Gear Live smart-
watches, which include an InvenSense MP92M 9-axis IMU
chip. The data is processed on MATLAB in an online, stream-
ing manner. We hire 5 student volunteers and ask them
to wear the watch on wrist. To ensure the accuracy of the
arm motion model, we measure the upper arm and forearm
lengths of each user.

Since arm model and range-of-motion are defined with re-
spect to the torso, we also insert a smartphone into each
user’s pant pocket, for roughly estimating their torso facing
direction, and therefore aligning their torso reference frame
(TRF, as shown in Figure 14) with global reference frame
(GRF).

Our arm motion model is most accurate when the user’s
body is not moving, otherwise torso motion will pollute
smartwatch IMU data. We divide the full experiment cycle
into 3 sessions: arm motion under (1) static body, (2) rotating
body (i.e., only the facing direction is changing), and (3) both
walking and rotating body. The volunteers were asked to
perform both random and natural gestures, such as eating,
smoking, lecturing, walking and pointing, ball room dancing,
etc.

Z(Up)
X(Front)
Z(Up)
t Y(North)
X(East)

Figure 14: Various reference frames: local, torso, and
global. Smartwatch IMU measures motion in local ref-
erence frame (LRF); arm model and range-of-motion
are defined with respect to the torso reference frame
(TRF).

B Metric and Ground Truth: Since it is difficult to obtain
the ground truth of smartwatch orientation, we evaluate the
accuracy of location tracking. Location error is computed
via two separate infrastructures. The first is a VICON-based
motion capture system with 8 infrared (IR) cameras on the
ceiling and small IR markers placed on the humans. The IR
stickers help reflect IR light, allowing the cameras to accu-
rately localize 3D location. The second method is through
a Kinect 2.0, placed closer to the human (clearly no mark-
ers were needed in this case). In both cases, we prevent
movements in the background to avoid interference with the
ground-truth computation. Unfortunately, we were unable
to use VICON at the end since the IR markers often got oc-
cluded due to arm and body motion, resulting in windows
of missing data. Hence, all our round truths are from Kinect.

6.2 Results

B Overall Accuracy

Figure 15 shows the overall CDF of watch location error in
the global reference frame, under 3 different background
body motions. Highest accuracy is achieved when the torso
is static, with median error of 8.8cm. As the body starts
rotating, the error increases slightly to 9.7cm, mainly due
to inaccurate facing direction estimation from the phone.
As the body also starts moving around, the motion model
becomes less applicable, and the accuracy further degrades
to 13.0cm. As a comparison, ArmTrak achieves an accuracy
of 9.2cm for static torsos, using offline decoding with future
data.

W Accuracy across Users

Figure 16 demonstrates the consistency of tracking across 5
different users. None of the users were trained in any way,
and were asked to move their hand in a completely unsuper-
vised manner. Their arm lengths are also shown in Table 1.
Evidently, there is no strong relationship between the arm
length and the watch’s location error. However, as expected,
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Figure 15: Overall CDF of watch location error in the
global reference frame (which is the aligned torso ref-
erence frame).

the performance variance across users grows with richer
body motion. The reason is rooted in each user having her
unique body motion pattern, bringing different errors to the
system.
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Figure 16: Accuracy across 5 users, under various body
motion.

User ID 1 2 3 4 5
Arm Length (cm) | 53.2 | 50.4 | 48.7 | 51.5 | 51.9

Table 1: Arm lengths of 5 users.

H Does the Error Diverge over Time?

Figure 17 shows how watch location error fluctuates over
time for a randomly picked trajectory. The error is large at
first, as the system is unaware of the watch’s starting location.
Once the arm starts moving, the overall error goes down
and does not drift over time. This is a desirable property
for inertial tracking systems, which are otherwise known to
diverge due to error accumulation.

B Tracking across Applications

As a final experiment, we also asked volunteers to perform
certain arm gestures as if they were in different applications
scenarios. These applications include: (1) Eating: a user per-
forms eating gestures while standing still. (2) Gym: a user
performs common gym gestures such as dumbbell lifting,
pull-backs, and boxing. (3) MR: medical rehabilitation, where
a user performs reach-and-grasp tasks, moves objects, etc.,
similar to how stroke patients are treated in the months after
the surgery. (4) AR: augmented reality, where a user casually
walks and turns around in a (museum) room and points at
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Figure 17: An example of tracking accuracy over time:
the error does not diverge.

certain objects. We envision information popping up on the
watch based on the object she points at. (5) Basketball: where
a user bounces the ball while moving briskly among other
users.

Figure 18 plots the results for each application, in increasing
order of complexity. The bars are those of 2 users that per-
formed worst from the set of 5 — again a conservative result.
Obviously, the performance is better at tracking simple ges-
tures (such as eating, gym) with relatively modest level of
background body motion. Results degrade with increasingly
complicated motions, and exhibit a sudden rise with highly
aggressive movements in basketball.
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Figure 18: Watch location error in applications.

7 POINTS OF DISCUSSION

MUSE leaves room for further investigation, as discussed
briefly in the interest of space:

(1) Optimality: We have not been able to comment on the
optimality of IMU based tracking. This needs a deeper sig-
nal processing treatment via models of random sensor noise
(and bias). Of course, when ignoring noise, we know that 3D
orientation is solvable given at least 5 DoFs of information
(2 from magnetometer and 3 from gyroscope). Location is
also solvable, although more sensitive since the system is
just adequately determined (3 DoFs of accelerometer for 3D
location). For real systems, however, the interplay of hard-
ware noise and restrictions of motion models will together
determine the system’s error. We leave this analysis to future
work.



(2) Running in Real Time: Part I runs a light-weight com-
plementary filter, which has less computational complexity
than related works that can already run on mobile and wear-
able devices in real time [11, 15, 16]. We ran Part II, the
particle filter, on a quad-core student desktop. The algorithm
outputs results at the rate of 10Hz (depending on the particle
filter update rate). The desktop needs 0.06 seconds to process
every 0.1 second of raw data. While the computation cannot
be afforded by a smartphone locally, it should be easy to
process it in the cloud, or an edge-computer. Given our band-
width requirement is a minimal 20kb/s, we expect MUSE
to operate in near-real time, with sub-second end-to-end
latencies.

(3) Magnetic Interference: In Part II, we performed our
experiments in an indoor office fitted with Kinect and VICON
ground truth systems. While the magnetic fluctuations in
this room were modest, it is possible that other locations
(e.g., factories) could experience severe fluctuations. Under
heavy fluctuations, it may be possible to perform joint arm
tracking and magnetic field profiling. This leaves another
dimension of improvement in the area of IMU tracking.

8 RELATED WORK

Hl IMU Orientation Estimation: As mentioned earlier, this
problem has been well studied in aerodynamics and robotics,
and various algorithms have been proposed to derive efficient
sensor fusion algorithms under specific error models [9, 10].
While some of these algorithms [4, 5, 11, 17-21] also use all
the available information of the magnetometer, they assume
that the object’s motion is slow or has intermittent stops.
Table 2 summarizes some of the important related works,
and classifies them based on their sensor fusion techniques,
and the key assumptions they have made. These assumptions
include:

(A): The linear motion is slow so that the average of ac-
celerometer is gravity.

(B): The rotational motion is slow and the error model is
Gaussian, in order to preserve the linearity of the system
model.

(C): The motion has frequent pauses (static moments) for
resetting the gravity estimation.

However, these assumptions may easily break down for con-
tinuous motion from human-wearable devices.

B IMU Location Tracking: Prior research has successfully
used IMU sensors for activity recognition and classification
[22-26], such as eating, smoking, typing, etc. However, track-
ing IMU’s exact location, also known as “IMU dead reckon-
ing”, is a much more challenging task. Past works [27-29]
have been able to track coarse-grained IMU location for

Related Sensor Fusion Key

Works Techniques Assumptions
[5-8, 33, 34] Complementary Filter | (A)

[17, 35-38] Kalman Filter (A) (B)

[39, 40] Kalman Filter (B) (©)

[3, 4, 18,19, 41-45] | EKF Filter (A) (B)

[2] EKEF Filter ®)(©)

[20, 21, 46] UKE Filter (A)

2 o |

[47] (Android APIs) 8; T;““C‘)mpass A)

Table 2: Related works on IMU orientation tracking,
classified based on their sensor fusion techniques and
key assumptions made.

short-time human walking motion, by counting steps and es-
timating step lengths using the IMU sensor. [14, 30-32] have
proposed to track locations of IMUs attached to human limbs.
However, they attach multiple IMUs, one for each rigid-body
component, essentially tracking the orientation (rather than
location) of the IMUs. Our work tracks the location of a sin-
gle wrist-worn IMU using arm motion models. Compared
with [12] which relies on full future data to perform offline
Viterbi decoding for IMU location, we perform joint location-
orientation tracking, and achieve better performance even
with online decoding.

Bl Other Tracking Modalities: Many other modalities can
track the position and motion of objects, including IR tech-
nology [48, 49], computer vision [50, 51], wireless sensing
[52-55], RFID [56, 57], visible light [58], acoustics [59-61],
etc. However, the core inertial nature of the MEMS IMU sen-
sors presents unique challenges distinct from other sensing
modalities.

9 CONCLUSION

This paper shows improvements to orientation tracking by
recognizing that magnetometers, unlike accelerometers, are
unpolluted by object motion. Then, the paper shows that
motion models can be employed to restrict the divergence of
location estimation, ultimately allowing for a joint estimate
of both 3D location and 3D orientation.
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