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ABSTRACT

This paper describes a system for automatically rating content
- mainly movies and videos - at multiple granularities. Our
key observation is that the rich set of sensors available on to-
day’s smartphones and tablets could be used to capture a wide
spectrum of user reactions while users are watching movies
on these devices. Examples range from acoustic signatures
of laughter to detect which scenes were funny, to the stillness
of the tablet indicating intense drama. Moreover, unlike in
most conventional systems, these ratings need not result in
just one numeric score, but could be expanded to capture the
user’s experience. We combine these ideas into an Android
based prototype called Pulse, and test it with 11 users each of
whom watched 4 to 6 movies on Samsung tablets. Encour-
aging results show consistent correlation between the user’s
actual ratings and those generated by the system. With more
rigorous testing and optimization, Pulse could be a candidate
for real-world adoption. [[]
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INTRODUCTION

Online content ratings serve as “quality indicators” to help a
user make more informed decisions. While these ratings have
been effective, we believe that there is room for improving
the value and experience with ratings. Our observations are
two-fold: (1) Today’s ratings are most often a simple number,
such as a “4 star” for a Netflix movie, a 87% red-tomato by
Flixster, or simply 23 Likes for videos in YouTube. These
numbers may be viewed as a highly-lossy compression of the
viewer’s experience, that often leaves the new user asking for
more. (2) Eliciting a carefully considered rating from users
is difficult, partly due to the lack of incentives. Providing a
brief review can take up a good amount of user’s time. Once

!The research leading to these results was done during Xuan’s PhD
in Duke University

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

UbiComp’13, September 8—12, 2013, Zurich, Switzerland.

Copyright (© 2013 ACM 978-1-4503-1770-2/13/09...$15.00.
http://dx.doi.org/10.1145/2493432.2493440

a user has watched the video, she may not be willing to make
this time investment. We envision that content rating systems
of the future will require minimal user participation and yet
provide rich, informative ratings. Figure[l|shows an example
—amovie thumbnail could not only have a star rating, but also
a tag-cloud of user reactions, and even short clips indexed by
these reactions (such as, all scenes that were hilarious).

This paper makes an attempt to realize this vision through a
system called Pulse. The opportunity arises from the growing
number of sensors that are entering the mobile platform, es-
pecially smartphones and tablets. We hypothesize that when
users watch a movie on these devices, a good fraction of
their reactions leave a footprint on various sensing dimen-
sions. For instance, if the user frequently turns her head and
talks — detectable through the front facing camera and micro-
phone — one could infer the user’s lack of attention to that
movie. Other kinds of inferences may arise from laughter de-
tection via the microphone, the stillness of the device from
the accelerometer, variations in orientation from gyroscope,
fast forwarding of the movie, etc. Pulse learns the mapping
between the sensed reactions and these ratings. Later, the
knowledge of this mapping is applied to users to automati-
cally compute their ratings, especially when they do not pro-
vide one. The sensed information is also used to create a
tag-cloud of reactions, expected to offer a “break-up” of the
different emotions evoked by the movie. If one wishes, she
may also be able to watch a set of short clips that pertain to
any of these emotions. Pulse can provide them since it logs
user reactions for each segment, across many users. The re-
sult is like a customized trailer [9], one per user reaction.
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Figure 1. Envisioned movie ratings for the future — a conventional 5-
star rating; a tag-cloud of user reactions; movie clips indexed by these
reactions.



The core ideas in Pulse may generalize to a variety of appli-
cations: (1) The timeline of a movie can be annotated with
reaction labels (e.g., funny, intense, warm) so that viewers
could jump ahead to desired segments. (2) The advertising
industry may use Pulse to offer free or subsidized movies
in exchange for more targeted ads. A user who reacts to a
particular scene could be presented with corresponding ads.
(3) It may be feasible to create an automatic highlights of a
movie, perhaps consisting of all action scenes. (4) Finally,
Pulse may offer educational value to film institutes and mass
communication departments — students can use reaction logs
as case studies from real-world users.

Of course, translating Pulse to reality, and enabling these ap-
plications, entails a number of challenges. The viewer’s head
pose, lip movement, and eye blinks need to be detected and
monitored over time to infer reactions [5]. The user’s voice
needs to be separated from the sounds of the movie (which
may be audible if the user is not wearing headphones), and
classified as either laughter or speech. Patterns in accelerom-
eters and gyroscopes need to be identified and translated to
user focus or distractions. Finally, the function that translates
reactions to ratings needs to be estimated through machine
learning, and the learnt parameters used to generate semantic
labels as a summary about the movie [17,23].

This paper incorporates these ideas into a Samsung tablet
running the Android OS, and distributes these tablets to real
users for evaluation. Results indicate that Pulse’s final ratings
are consistently close to the user’s ratings (mean gap of 0.46
on a 5 point scale), while the reaction tag-cloud reliably sum-
marizes the dominant reactions. The highlights feature also
extracted the appropriate segments, while the energy foot-
print remained small and tunable. A small-scale user study
generated an enthusiastic response to Pulse.

The main contributions may be summarized as follows.

e We identify an opportunity to automatically rate con-
tent at a few different granularities. Our approach
requires minimal user participation and harnesses multi-
dimensional sensing available on modern tablets and
smartphones.

e We design a practical system, Pulse, that senses user
reactions and translates them to an overall system rat-
ing. In addition, we process the raw sensor information
to produce rating information at variable granularities — a
tag-cloud and a reaction-based highlight.

e We develop Pulse on Android based Samsung Galaxy
tablets and evaluate it with 11 volunteers, each of whom
watched 4 to 6 movies. Results show that the average gap
between human and system ratings is 0.46 (on a 5 point
scale). The tag-cloud exhibits similarity to the user’s true
reactions, thereby capturing reasonably, the user’s overall
experience.

The rest of the paper expands on each of these contributions,
beginning with a high level overview, and followed by de-
sign, implementation, and evaluation.

SYSTEM OVERVIEW

Pulse has been implemented on Android tablets and focuses
specifically on movies and videos. Figure [2| envisions the
high level architecture. This section briefly describes the
three main modules, namely (1) Reaction Sensing and Fea-
ture Extraction (RSFE), (2) Collaborative Labeling and Rat-
ing (CLR), and (3) Energy Duty-Cycling (EDC).
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Figure 2. Architectural overview of Pulse.

(1) Reaction Sensing/Feature Extraction (RSFE)

When a user watches a video via the Pulse media player,
all relevant sensors are activated, including the (front-facing)
camera, microphone, accelerometer, gyroscope, and available
location sensors. The raw sensor readings are forwarded to
the RSFE module, which is tasked to distill out the features
from them. These features inlude visual features collected
through the front-facing camera, acoustic features extracted
from embedded microphone, motion features (acceleration,
rotation) captured by motion sensors, and control operations
(e.g., fast forward) detected by the media player. RSFE col-
lects all these features and forwards them to the collaborative
labeling and rating (CLR) module.

(2) Collaborative Labeling and Rating (CLR)

Content storage and streaming, especially with movies and
videos, is moving towards the cloud based model. The ability
to assimilate content from many cloud users naturally offer
insights into behavior patterns of a collective user base [21]
— Netflix, Amazon, Hulu, are examples of service providers
that leverage this approach to provide recommendation and
personalization. Pulse is also positioned to benefit from ac-
cess to the cloud. In particular, Pulse employs collaborative
filtering methods where ratings are used across users to help
improve accuracy. With more labeled data from users, Pulse
will improve in its ability to learn and predict user ratings.

Sensing user reactions and exporting to the cloud raises pri-
vacy concerns [12], especially with face detection. However,
we observe that none of the raw sensor readings need to be
shared. Upon approval from the user, only ratings and se-
mantic labels (or any subset of them with which the user is
comfortable) can be exported. In the degenerate case, Pulse
uploads the final star rating and discards the rest. This mim-
ics today’s systems, except that the rating will be determined
automatically.



(3) Energy Duty-Cycling (EDC)

When the tablet is connected to a power-outlet, the EDC mod-
ule is not necessary. In fact, we find that Pulse’s additional
energy consumption due to sensing is marginal compared to
the energy consumed by the tablet’s display and CPU, while
playing the movie. However, when running on smartphones,
EDC'’s task is to minimize the energy consumption due to
sensing. As mentioned earlier, the key idea is to sense each
user during non-overlapping time segments, and then “stitch”
the user reactions to form the overall rating. The evaluation
section presents measurement results.

Figure 3| shows how the different sub-modules lead up to the
final rating. The RSFE module processes the raw sensor read-
ings and extracts features to feed to CLR. The CLR mod-
ule processes each (1 minute) segment of the movie to create
a series of “semantic labels” as well as “segment ratings”.
Techniques such as collaborative filtering, Gaussian process
regression (GPR), and support vector machines (SVM) are
employed to address different types of challenges. Finally,
the segment ratings are merged to yield the final “star rating”
while the semantic labels are combined to create a tag-cloud.
Thus, from the raw sensor values to the final star rating, Pulse
distills information at various granularities to generate the fi-
nal summary of the user’s experience. We begin the technical
discussion with the RSFE module.
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Figure 3. The RSFE and CLR modules distill raw sensor readings to a
rating, tag-cloud, and video trailers

SYSTEM DESIGN: RSFE
We discuss the design of the Reaction Sensing and Feature
Extraction module (RSFE).

Reaction Features: Visual

Pulse records visual information from the front camera to
assess human reactions. Several prior efforts have attempted
to achieve this using techniques involving face detection, eye
tracking, and lip tracking [15]. However, our application
presents a few unique challenges and opportunities compared
to the traditional scenarios. First, the front facing camera on
a mobile device usually does not capture the user’s face from
an ideal angle. In the case of our tablet, the top-mounted
camera usually captures a tilted view of the face and eyes,
requiring us to compensate for a rotational bias. Second, due
to relative motion between the user and the tablet, the user’s
face may frequently move out of the camera view, either fully
or partially. This derails contour matching methods, making

continuous face detection difficult. Third, practical issues
such as users wearing spectacles adds to the complexity. For-
tunately, however, the field of view of the tablet is usually
limited, making it easier to filter out unknown objects in the
background, and extract the dominant user’s face. Also, for
any given user, particular head-poses are likely to repeat more
than others (due to the user’s head-motion patterns).

Pulse employs a combination of face detection, eye tracking,
and lip tracking, using techniques from contour matching,
speeded up robust feature (SURF) detection [3], and frame-
difference based blink detection algorithms [15]. The flow of
operations is as follows:

1. Pulse continuously runs a contour matching algorithm on
each frame for face detection.

2. If a face is detected, the system runs contour matching for
eye detection as well as lip detection, and identifies the
SURF image keypoints in the region of the face. These im-
age keypoints may be viewed as small regions of the face
that maintains similar image properties across frames.

3. Now, if a full face is not detected, Pulse still tracks key-
points similar to previously detected SURF keypoints — this
allows detecting and tracking a partial face, which occurs
frequently in real life.

4. Pipelined with the face detection, Pulse runs an algorithm
to perform blink-detection and eye-tracking. The differ-
ence in two consecutive video frames are analyzed to iden-
tify a blink. Essentially, if the pixels that change across
consecutive frames form two nearly-symmetric ellipses,
then the pixels are likely to be the blink. For eye-tracking,
contour matching-based techniques fail when users are
wearing spectacles — blink-detection is effective here. In
other words, even if the eyes are blurred by the spectacles,
the blinks can approximate the eye positions.

Figure [ shows an intermediate output of the algorithm. Here
Pulse detects the face through the tablet camera, detects the
eyes using blink detection, and finally tracks the keypoints.

Figure 4. Visual sensing in Pulse: Face, eye, and blink detection for a
user with spectacles.

Pulse draws out the following features: face position, eye po-
sition, lip position, face size, eye size, lip size, relative eye
and lip position to the entire face, and the variation of each
over the duration of the movie. We believe these features
reasonably capture some of the reaction footprints useful for
ratings [11].

Reaction Features: Acoustic

The Pulse video player activates the microphone and records
ambient sounds while the user is watching the movie — this
sound file is the input to our acoustic sensing sub-module.
The key challenge is to separate the user’s voice from the
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movie soundtrack, and then classify the user’s voice as ei-
ther laughter or speech. Since the movie soundtrack played
on the tablet’s speakers can be loud, separation is not straight-
forward. We describe Pulse’s approaches as follows.

Voice Detection

Given that the human voice exhibits a well-defined footprint
on the frequency band (bounded by 4k H z), Pulse’s first ap-
proach was to extract this band using a low pass filter and
then perform separation [22]. However, the tablet already
performs this filtering (to improve speech quality for phone
calls). Figure [5] demonstrates this by comparing the Power
Spectral Densities of the following: (1) the original movie
soundtrack, (2) the sound of the movie recorded through the
tablet microphone, and (3) the sound of the movie and hu-
man voice, recorded by the tablet microphone. Evidently, the
recorded sounds drop sharply at around 4k H z. At less than
4k H z, the movie soundtrack with and without human voice
are comparable, and therefore non-trivial to separate.

Pulse adopts two heuristic techniques to address the prob-
lem, namely (1) energy detection before and after speech
enhancement and (2) per-frame spectral density comparison.
We describe them here and show how they are applicable in
different volume regimes.

(1) Energy Detection with Speech Enhancement:

Well established speech enhancement tools in literature can
suppress noise and amplify the speech content in an acoustic
signal. Pulse uses this to its advantage by measuring the
(root mean square) signal energy before and after speech en-
hancement. For each frame, if the RMS energy diminishes
considerably after speech enhancement, we regard this frame
as noise. The simple intuition is that signals that contain
speech will pass background noise suppression without being
affected significantly; other noises should be reduced.

(2) Per-frame Spectral Density Comparison:

We observe that the power spectral density within [0, 4] kHz
is impacted by whether the user is speaking, laughing, or
silent. In fact, the conversation from the movie can also
impact this frequency regime. Figure [5| demonstrates an
example case. Therefore, we compare the (per-frequency)
amplitude of the recorded sound with the amplitude from
the original soundtrack in each frame. If the amplitude of
the recorded signal exceeds the soundtrack significantly, we
deem that this video frame contains the user’s voice.

Heuristic Selection based on Volume Regimes:

The two heuristics above perform differently depending on
the volume of playback. Therefore, we use the energy detec-
tion heuristic when the playback volume is low and choose
spectral density comparison for high-volume scenarios. Fig-
ure [6(a)] reports their performance when the tablet volume
is high — the dark horizontal lines in the top window repre-
sents the time windows when the user was actually speaking.
The dark horizontal lines in the other two windows represent
system detected speaking. Evidently, the second heuristic —
per-frame spectral density comparison — exhibits better dis-
criminative capabilities. This is because at high volumes, the
human speech gets drowned by the movie soundtrack, and
speech enhancement tools become unreliable. However, in
low-volume cases, the soundtrack power is still low while the
human voice is high, thereby allowing energy detection to
identify the voice. Figure [6(b)| shows this situation.
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Low Volume.

Laughter Detection

Pulse assumes that acoustic reactions during a movie are ei-
ther speech or laughter — so, once human voice is detected,
it needs to classified to one of the two categories. We use
a support vector machine (SVM) and train it on the Mel-
Frequency Cepstral Coefficients (MFCC) as the principle fea-
tures. In sound processing, Mel-frequency cepstrum is a rep-
resentation of the short-term power spectrum of a sound, and
are commonly used in speech recognition [14]. To reduce
false positives, Pulse performs a simple outlier detection. If
a frame is suspected as laughter, but the 4 preceding and fol-
lowing frames are not, then these outlier frames are elimi-
nated. Figure [/| reports results showing high accuracy and
few false positives.

Reaction Features: Motion

Accelerometer and gyroscope readings are also likely to con-
tain information about the user’s reactions. The mean of the
sensor readings over the playback of the entire movie may
capture the typical holding position/orientation of the de-
vice, while variations may be indicators of potential events.



Sound Signal
— Laughter Detected
05 J
(]
=] .
3 .
E otrry 11 mE LB
g .
< .
-0.4 : i
1 N N 1 o . N N
0 10 20 30 40 50 60 70 80
Time (S)
Figure 7. Discriminating laughter and speech from voice signals

recorded by a tablet microphone.

Figure [§] shows an example where mean and variance (af-
ter some smoothing) appear well correlated to when users’
ratings change. It is possible that users are performing micro-
movements at the beginning or end of logical segments, and
the sensors seem to be capturing them. Pulse attempts to gain
insights from these motion signatures.
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Figure 8. Motion correlates with rating changes.

Reaction Features: Touch Screen

Users tend to skip boring segments of a movie and, some-
times, may roll back to watch an interesting segment again.
The information about how the user moved the slider can
reveal the user’s reactions for different movie segments. If
Pulse observes a developing trend for skipping certain seg-
ments, or a trend in rolling back, the corresponding segments
are assigned ratings proportionally (lower/higher).

SYSTEM DESIGN: CLR

This section describes the machine learning components in
Pulse. The key goals are to model the sensed data and use the
models to: (1) estimate segment ratings; (2) generate the final
star rating from the segment ratings; (3) estimate semantic
labels; (4) generate the tag-cloud from the semantic labels.
To this end, Pulse requests multiple users to watch a movie,
label different segments of the movie, and provide a final star
rating as ground truth.

Ratings. Segment ratings are ratings for every short segment
of the movie, necessary to compute the overall movie quality
as well as to select enjoyable segments. A key challenge here
is the ambiguity in how reaction features map to segment
ratings. Laughter in a comedy movie may be a positive reac-
tion, while laughter in a horror movie may mean the opposite.
Some users may get excited and fidget in an intense scene,
while others may watch it motionless. Pulse employs Col-
laborative Filtering and Gaussian Process Regression (GPR)
to cope with such ambiguities (detailed later). To convert
segment ratings to the final rating, Pulse uses a weighted
averaging function.

Labels. Semantic labels are English labels assigned to each
segment of the movie. CLR generates two types of such la-
bels — reaction labels and perception labels. (1) Reaction la-
bels are direct outcomes of reaction sensing, reflecting on the
viewer’s raw behavior while watching the movie (e.g., laugh,
smile, focused, distracted, nervous, etc.). (2) Perception la-
bels reflect on subtle emotions evoked by the corresponding
scenes (e.g., funny, exciting, warm, etc.) While identifying
reaction labels is straightforward, identifying perception la-
bels is more challenging. Pulse employs a semi-supervised
learning method combining Collaborative Filtering and SVM
to predict perception labels. Then, Pulse aggregates all the
predicted labels, counts their relative occurrences, and devel-
ops the tag-cloud description of the movie. The efficacy of
prediction is quantified through cross-validation. The follow-
ing subsection elaborates on the methodology and techniques.

Modeling and Prediction Challenges

We begin by describing our experimentation methodology,
which will help explain the challenges we faced during mod-
eling and prediction. Thereafter, we describe the solutions.

Experiment Methodology

To obtain labeled user data, we conducted a formative user
study. We initially recruited 11 volunteers (4 females), aged
24-28. We provided volunteers with Android-based Samsung
tablets pre-loaded with 6 movies (3 comedies, 2 dramas, and
1 horror), and asked them to watch only those movies they
have not watched earlier. The volunteers were required to
watch the movie using our Pulse video player, which activates
and records sensor readings during playback. Because we
needed data from natural settings, we let users watch movies
at any place and time they chose; most users took the tablets
home. We also provided a software tool that allowed users to
rate the movie soon after they watched it. ] This tool scans
through the movie minute by minute (like fast-forwarding)
and allows volunteers to rate segments on a scale from 1 to
5 (1 being “did not like”, 5 being “liked”). Volunteers also
labeled some segments with “perception” labels, indicating
how they perceived the attributes of that segment. The per-
ception labels were picked from a pre-defined set — some
examples are “funny”, “scary”, “intense”. Finally, volun-
teers were asked to provide a final (star) rating for the overall
movie, again on a scale of 1 to 5.

Challenges

Pulse’s goal is to model user behavior from the collected la-
beled data, and use this model to predict (1) segment ratings,
(2) perception labels, and (3) the final (star) rating for each
movie. Note that this is a high bar for Pulse — predicting
human judgment, minute by minute, is quite difficult. The
difficulty gets exacerbated by 3 types of heterogeneities, de-
scribed next.

(1) Heterogeneity in users behavior: Some users watch
movies attentively, while others are more fidgety. Such di-
versities are common among users, and particularly so when
observed through the sensing dimensions. As a result, a naive
universal model trained from a crowd of users is likely to

2To avoid affecting user’s watching behavior, we asked users to pro-
vide ratings only after the finished watching the entire movie



fail in capturing useful behavioral signatures for any specific
user. In fact, such a model may actually contain little infor-
mation since the ambiguity from diverse user-behaviors may
mask (or cancel out) all useful patterns. For example, if half
of the users hold their devices still when they are watching
a movie intensely, while the other half happen to hold their
devices still when they feel bored, a generic model learned
from all this information will not be able to use “stillness” as
a discriminator between intensity and boredom. Thus, a good
one-fit-all model may not exist. To confirm this, we created
a regression model for estimating segment ratings using all
available labeled data. Figure[9]plots the cross-validation re-
sults for the leave-one-video-out test, comparing the model’s
estimated segment ratings vs. the actual user ratings. The
results show that the model’s estimates fail to track the ac-
tual user ratings, and mostly converges on the mean rating of
training data.
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Figure 9. Poor results from regression when attempting to learn a model

applicable to all users.

(2) Heterogeneity in environment factors: Even for the
same user, her “sensed behavior” may differ from time to time
due to different environmental factors. For instance, the be-
havior associated with watching a movie in the office may be
substantially different from the behavior during a commute,
which is again different from when at home. Figure[I0]shows
the gyroscope sensor data distribution from the same user
watching two movies. The distribution clearly varies even
for the same user, indicating that the way the user holds the
device may not always be similar.
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Figure 10. Orientation sensor data distribution

(3) Heterogeneity in user tastes: Finally, users may have
different tastes, resulting in different ratings/labels given to
the same movie scene. Some scenes may appear hilarious
to one, and may not be so to another. Figure [IT] shows the
deviation in ratings given to the same scenes by 5 different
users. Clearly, there is dissimilarity in taste.

Pulse’s Learning Approach
The heterogeneities described above highlight the core chal-
lenge — we need to develop a model that will capture the
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Figure 11. High Std. Dev. in ratings across users.

unique taste/behavior of a user under different environments.
One (brute force) approach would be to train a series of per-
user models, each tailored to a specific viewing environment
and for a specific genre of a movie. However, it is nearly im-
possible to enumerate all such environments, and worse, the
user would have to provide ratings and labels for all combina-
tions of movie genres and environments. This is impractical.

Pulse overcomes this problem by basing its solution on the
following intuition. Although users exhibit heterogeneity
overall, their reactions to certain parts of the movie are re-
markably similar (or coherent). Therefore, we analyze the
collective behavior of multiple users to extract only these
coherent signals — i.e., segments for which most users exhibit
agreement in their reactions. Similarly, for perception labels,
Pulse also learns from segments on which most users agree.
Collaborative filtering techniques [21] provide the ability to
draw out these segments of somewhat “universal” agreement.
We designed two separate semi-supervised learning methods
— one for segment ratings and another for perception labels.
For segment ratings, we combine collaborative filtering with
Gaussian Process Regression (GPR). Using GPR, data from
multiple sensing dimensions can be easily combined using
the co-training procedure. For perception labels, we combine
collaborative filtering with support vector machines (SVM)
since this is essentially a multi-class classification problem.

When a new user watches a movie, Pulse uses the sensed
data from only the “universally agreed” segments to train a
customized model, which is then used to predict the ratings
and labels of the rest of the user’s segments. In other words,
Pulse bootstraps using ratings that are agreeable in general,
and by learning how the new user’s sensing data correlates
with these agreeable ratings, Pulse learns the user’s “idiosyn-
crasies” (which is the most difficult aspects of automatic con-
tent rating). Now, with knowledge of these idiosyncrasies,
Pulse can “extrapolate” to other segments of the movie (that
users did not agree upon), and predict the ratings for this
specific user [16]. Figure [12] illustrates our method. From
the ratings of users A, B, and C, Pulse learns that minute 1
is intense (I) and minute 5 is boring (B). Then, when user D
watches the movie, his sensor readings during the first and
the fifth minutes are used as the training data to create a per-
sonalized model. This model is then used to predict the 2"¢,
374, and 4*" segment ratings.

Figure shows that Pulse’s approach works reasonably
well, with Pulse’s estimated ratings tracking the actual user
ratings. We will discuss additional results on segment rating
and label prediction in the evaluation section.
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Besides coping with inherent heterogeneity of users, we ob-
served additional challenges emerging from (1) time-scale of
ratings and (2) sparsity of labels. The first problem arises
from the mismatch between the time-scale of sensed reac-
tions (a laughter lasts a few seconds) and the time-scale of
human ratings (one for each minute). As a result, the human
labels we obtain are not necessary labeling the specific sensor
pattern, but rather an aggregate of useful and useless patterns
over the entire minute. This naturally raises the difficulty for
learning the appropriate signatures. The situation is similar
for labels. It is unclear exactly which part within the 1-minute
segment was labeled as hilarious, since the entire minute may
include both “hilarious” and “non-hilarious” sensor signals.
To cope with this, we assume that each 3 second window in
the sensing data has the label of the corresponding minute.
In our prediction, once Pulse yields a rating/label for each
3-second entry, we aggregate them back to the minute gran-
ularity, allowing us to compute both prediction accuracy and
false positives.

The second problem relates to how labels gathered in each
movie are sparse (volunteers did not label each segment, but
opted to label only scenes that seemed worthy of labeling).
As a result, we found 65.9% of the segments unlabeled. This
warrants careful adjustment of the SVM’s weighting parame-
ters to assign more importance to the positive samples — oth-
erwise SVM may classify all segments as “none of the valid
labels”, and appear to achieve high accuracy (since much of
the data indeed has no valid label). Precisely recognizing
and classifying the few minutes of the labeled segments, from
thousands of minutes of recordings, is an ambitious task. We
designed under these constraints while ensuring we do not
over-fit — the next section reports on the results.

EVALUATION

In this section, we demonstrate the feasibility of predicting
(1) segment ratings, (2) final ratings, and (3) semantic labels,
through multi-dimensional sensing.

Metrics

We adopt three measures commonly used in information re-
trieval, namely, Precision, Recall, and Fallout. These met-
rics essentially are methods to compute overlaps (and non-

overlaps) between two sets of items. Consider the case of
segment rating. One set is the set of movie segments that the
user truly enjoyed (i.e., segments manually rated as 4 or 5)
— we call this the Human Selected set. The other set con-
tains segments that Pulse believes the user enjoyed — called
the Pulse Selected set. Then, the 3 metrics can be defined as:

|[{Human Selected N Pulse Selected} |

Precision —
recson |[{Pulse Selected}|
Recall |[{Human Selected N Pulse Selected} |
ecall =
[{Human Selected} |
Fall ; |{Non-Relevant N Pulse Selected}|
all — out =

|[{Non-Relevant }|

Higher values of precision and recall are better; the converse
for fallout. These metrics apply for the semantic labels as
well, where one set is provided by humans, and the other gen-
erated by Pulse.

Summary of Results

1. Segment Rating: Predicted segment ratings closely fol-
low users’ segment ratings, with an average error of 0.7 on
a 5-point scale. This is a 40% improvement over estima-
tions based on only distribution or collaborative filtering
(the improvement is more pronounced in terms of recall).
More importantly, Pulse is able to capture enjoyable seg-
ments with an average precision of 71%, an average recall
of 63%, and a minor fallout of 9%.

2. Final Rating: Pulse’s overall star rating demonstrates an

average error of 0.46 in the 5 point scale.

3. Label quality: On average, Pulse covers 45% of the per-

ception labels with a minor average fallout of 4%. We also
observe an order of magnitude improvement over a pure
SVM-based approach and modest gains over collaborative
filtering. The reaction labels capture the audience’s reac-
tions well. The tag-clouds were received with enthusiasm
(a qualitative feedback). Detailed results follow.

Performance of Segment Rating

To quantify Pulse’s accuracy at predicting segment ratings on
the 5-point scale, we compared the results of four prediction
algorithms: Random, Collaborative Average, Collaborative
High Confidence and Pulse. Random predicts the scores
randomly. Collaborative average uses the average of all
user’s segment ratings as the prediction. Collaborative High
Confidence assigns the average user’s score for only those
segments that were given consistent ratings by most users
and assigns the scale’s average score (3 in our case) to other
segments. Finally, Pulse, uses collaborative filtering results
as a starting point and exploits sensing data as described in
previous sections to provide a more accurate prediction. Fig-
ure[T4]plots the mean prediction errors of the four algorithms
as black bars. Pulse outperforms other algorithms, achieving
0.7 mean error. This result shows the value that sensing data
may bring to automatic segment rating.

Often, people are interested in finding good movies (rated
above 3) and may not care whether a movie is rated 1.4 or



2.4. This observation can be used to optimize Pulse further
by treating ratings from 1 to 3 as the same. In doing so, we are
essentially reducing the resolution of expressing that a movie
is not worth watching to a single score. The mean predic-
tion errors of the four algorithms, when the rating score is
reduced to a 3-point scale, are shown as grey bars in Figure
Here, Pulse again outperforms other algorithms, achiev-
ing 0.25 mean error.
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Figure 14. Mean Pulse segment rating error.

Segment Selection.

Pulse selects the “enjoyable” segments, i.e., ones rated as 4
and above, to generate a highlights of the movie. To evaluate
whether Pulse’s selection matches with the user’s, we evalu-
ate Pulse using precision, recall, and fallout. Figure[I5]shows
the average precision ranges from 57% to 80%, an average re-
call of 63%, and a minor fallout usually less than 10%. Pulse
performed well on 2 comedy and 2 dramas, corresponding to
the first four bars in each group. The performance was weaker
in the remaining 2 movies (1 comedy and 1 horror).
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Figure 15. Precision/Recall/Fallout per video

Figure (16| shows the average per-user performance. Except
for one outlier (the second user), the precision is above 50%
with all recalls above 50%. Fallout ranges from 0 to 19%.
Given the sparse labels we have, the accuracy we believe is
reasonable — on average Pulse creates less than one false pos-
itive every time it includes five true positives. One may ob-
serve that the second user might be characterized as “picky”
— the low precision, reasonable recall, and small fallout, sug-
gest that she rarely assigns high scores. We note that all the
above selections are personalized; a good segment for one
user may be boring to another and Pulse can identify these
inter-personal differences.
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Figure 16. Precision/Recall/Fallout per user
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Figure [17|illustrates the break-up of contributions from col-
laborative filtering and sensing. The four bars show the num-
ber of true positives, total number of positive samples (seg-
ments with ratings of 4 or 5), false positives, and total num-

ber of negative samples (segments with rating 1 to 3), respec-
tively. As the figure illustrates, the contribution from sensing
is substantial.
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Figure 17. Break-up of contributions.

Performance of Final “Star” Rating

Pulse generates final ratings by thresholding the mean scores
of per-minute segment ratings. This thresholding function es-
sentially tries to learn how users map their mean scores for
each segment to the final score. Figure[I8|a) shows the means
of predicted and true segment ratings (dashed and solid lines),
as well as the true final rating. Pulse tracks the user’s mean
rating well. We observed that users are often conservative in
rating the movie segments, but more generous with the final
rating. Figure [I§[(b) shows Pulse’s prediction of final ratings
using a confusion matrix. Higher values concentrate around
the diagonal, indicating desired performance. We are aware
that we may have over-fitted our data with the thresholds, and
intend to investigate this more carefully in future.
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Figure 18. (a) Mean segment ratings and corresponding users’ final rat-
ings. (b) Confusion matrix.

Performance of Label Quality

Pulse associates semantic labels to each movie segment and
eventually generates a tag cloud for the entire movie. This
section evaluates the efficacy to predict labels. Recall that
our semantic labels consist of reaction labels and perception
labels; we evaluate them separately. As a ground truth, we
intend to know the user’s reactions and perceptions at every
time point. However, providing this information (while the
user is watching the movie) would have interfered with their
viewing experience. Therefore, we asked the users to provide
the perception labels to each movie segment after watching
the movie. For reaction labels, we recruited two volunteers
to view the video recording from the tablet camera, and label
the viewer’s reactions — we used this as ground truth [7].



Reaction Label Quality

Reaction labels capture users’ actions while watching a movie
(e.g., laugh, smile, etc.). The (limited) vocabulary is shown
in Table[I] Figure [I9|shows the comparison between Pulse’s
prediction and the ground truth — the gray portion is ground
truth while the black dots denote when Pulse detects the cor-
responding labels. Although Pulse sometimes mislabels on a
per-second granularity, the general time frame and weight of
each label is reasonably well captured.

Table 1. Label Vocabulary

Label Category Vocabulary
Perception Funny, Intense, Warm
Reaction Laugh, Smile, Shaking,
Focused, Distracted, Speaking

T
Laughing -

Smiling
Shaking | /qme - - -
Speaking Y - - Fry
(5 260 460 660 860 ldOO 1200
Time (S) V2 (Comedy)

Figure 19. Reaction label prediction vs. groundtruth

Perception Label Quality

Perception labels represent a viewer’s perception of each
movie segment (e.g., funny, warm, intense). Figure [20]shows
the performance of perception label prediction for each la-
bel, averaged over all users. These labels are hard to predict
because (1) their corresponding behaviors can be subtle and
implicit; (2) users provided these labels for few segments.
Our performance is proportionally weaker: average precision
is 50%, recall is 35%; however, fallout is satisfactory: 4%.

Figure[2T|compares the performance between pure-SVM (us-
ing cross validation), collaborative filtering, and Pulse. From
top to bottom, the figures show precision, recall, and fall-
out, respectively. Pulse demonstrates substantial improve-
ment over SVM alone, but is comparable to collaborative fil-
tering.

Tag Cloud and User Feedback

We attempted to visually summaries the results of Pulse us-
ing a tag cloud similar to Figure [ The terms used within
the tag-cloud combine perception and reaction labels, each
weighted by its normalized occurrence frequency. We in-
formally asked users who watched the episode (using Pulse)
to comment on this tag-cloud. The feedback was resonantly
enthusiastic, with comments like “very cool”, and “certainly
useful information with zero extra burden”. Some users cor-
rectly pointed out that “a richer tag set is needed”.

Power Consumption

We measured the power consumption of Pulse on the Sam-
sung tablets and Nexus S smartphones, using the Monsoon
Power monitor. Figure compares Pulse’s performance
with conventional media players — with no active sensors.
Given the high playback and display power on tablets, Pulse-
based sensing adds only 16% more energy. The energy bur-
den is higher on smartphones, and would call for duty cycling
the sensors, perhaps to only sense the decisive segments. We
leave this to future work.
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Figure 22. Power consumption comparison.
RELATED WORK

Pulse builds on work that falls roughly in two areas: activity
inferencing and multimedia annotation. We discuss some of
the related work here.

Activity Inference: The large number of sensors on mo-
bile devices have been leveraged as a rich sensing platform.
Accelerometers are useful beyond motion [1]; microphones
often effective in detecting environments [13], and user’s re-
action [2, 10, 25]; front-facing cameras are valuable towards
face/eye tracking in real-time video streams. Combined with
machine learning and inferencing, these platforms are lend-
ing themselves to intent and context recognition [?]. The
future is poised for more activities along these directions. Of
course, such forms of continuous sensing causes substantial
power drain. Existing proposals include offloading to the
cloud [6] or duty cycling techniques [24]. In future, efforts
such as Little Rock could offload sensing to DSP chips, al-
lowing the CPU to sleep [18].

Multimedia Annotation: A powerful technique to annotat-
ing multimedia is to aggregate sensor data across multiple de-
vices as a way of supersampling [8]. TagSense is one exam-
ple, using sensor data from multiple devices, to annotate im-
ages [19]. Pulse uses a similar approach, but asynchronously
aggregated across users. Recommender systems often anno-
tate items using a set of known attributes — this maintains
calibration across users, while capturing diversity in opin-
ions [26]. Though these results tend to yield diverse results,
they are resource intensive, require lots of time [20]. We hope
to address some of these issues with a sensor based approach,
available free in today’s devices.

CONCLUSION

Advances in personal sensing and machine learning are em-
powering machines to better understand human behavior.
This paper guides this opportunity into an application that
automatically rates content on behalf of human users. The
core idea is to leverage device sensors, such as cameras,
microphones, accelerometers, and gyroscopes, to sense qual-
itative human reactions while she is watching a video;learn
how these qualitative reactions translate to a quantitative
value; and visualize these learnings in an easy-to-read for-
mat. Thus, when using our system, a movie automatically
gets tagged not only by a conventional star rating, but also
with a tag-cloud of user reactions, as well as highlights of the
movie for different emotions.

At this stage, Pulse is still a prototype with many limita-
tions. On the technical side, the current label vocabulary
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Figure 21. Performance comparison between SVM, collaborative filtering and our method (Pulse).

is still limited. We intend to explore additional optimiza-
tions in machine learning to improve performance, while
taking advantage of more sensors that enter the tablet plat-
form. Moreover, the current implementation does not focus
on scenarios where multiple people watch movies together on
mobile devices. New designs may be needed to accomodate
such situations. On the social side, pulse may raise privacy
concerns especially for exporting information to the cloud.
Though we do not have a clear solution to this problem yet,
Pulse should certainly place most of its functionalities locally
on the user’s device and potentially only needs to upload
ratings in the end. Different methods for data fusion can also
help anonymize the data.

With these limitations, we still believe there is value in build-
ing a sensing-based automatic rating system. With the uni-
verse of content growing at a rapid pace, the need for associ-
ating meta data to content will become increasingly relevant.
Pulse is an early attempt towards this goal, with direct ap-
plications in recommendations systems and information re-
trieval [4].
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