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ABSTRACT

We intend to develop a smartphone app that can tell whether
its user is a driver or a passenger in an automobile. While the
core problem can be solved relatively easily with special in-
stallations in new high-end vehicles (e.g., NFC), constraints
of backward compatibility makes the problem far more chal-
lenging. We design a Driver Detection System (DDS) that
relies entirely on smartphone sensors, and is thereby com-
patible with all automobiles. Our approach harnesses smart-
phone sensors to recognize micro-activities in humans, that
in turn discriminate between the driver and the passenger.
We demonstrate an early prototype of this system on An-
droid NexusS and Apple iPhones. Reported results show
greater than 85% accuracy across 6 users in 2 different cars.

1. INTRODUCTION

The synergy of sensing, computing, and communication on
modern smartphones is enabling high resolution insights
into human behavior. Recent research has attempted to
leverage these insights for improved personal activity recog-
nition, ranging from simple activities such as walking and
running [3] to more sophisticated ones like, whether the user
is laughing in a social gathering or is riding a car, bus, or a
train [1,7]. In this work, we intend to add Is_Driver? to this
library of detectible activities. The goal is to discriminate
whether a phone’s user is the driver or the passenger in a
car, thereby enabling a variety of vehicular applications on
the smart phone. For instance, several car insurance com-
panies are aiming to personalize the insurance rates paid by
individuals. Their aim is to charge a premium in proportion
to the number of hours he or she drives. Logging the hours
of driving is an important step towards this direction. In a
different application, a passenger in a car may be allowed
to receive phone calls, location based notifications, or social
network updates. However, such distractions may need to be
suppressed for the driver to uphold driver safety [4,6]. Our
proposed driver detection system (DDS) would be an useful
building block for these applications.

The core driver detection problem may be approached from
multiple directions. Newer cars have a range of sensors and
radios that could aid in detection. For instance, (1) near field
communication (NFC) radios on the drivers door could be
programmed to identify the mobile phone that is closest to
it; the owner of this phone should be the driver. (2) Pressure
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sensors on car seats could be used to measure the weight
of the person on the driver seat; knowing the weights of
people who are likely to drive that car could facilitate driver
detection. (3) Given that most cars have audio speakers,
a recent work from MobiCom 2011 [5] generated a sound
signal from each of the four speakers in a programmed se-
quence — the phone recorded the sounds and triangulated
its location to one of the four quadrants in the car. While
all these approaches indeed identify the driver, they require
some degree of modification to the car’s inner workings.
This paper targets the problem of driver detection with zero
modifications to the car. Our goal is to leverage the rich suite
of smartphone sensors, including the accelerometer, gyro-
scope, and microphone (in some infrequent cases). Users of
our system can continue to use their existing cars, however
old, making our system simple and backward compatible.

Our key idea behind the DDS system is simple. We hy-
pothesize that the driver and the passenger perform non-
identical micro-activities that can be captured and discrim-
inated through multi-modal sensing. For instance, a driver
inserts her right foot inside the car first, while the passenger
does the opposite. Thus, if the inserting foot has a particular
motion signature on the phone’s accelerometer, then ob-
serving that signature reveals that the phone is either on the
right pant pocket of the driver, or the left pant pocket of the
passenger. Now, if its the former, then the driver should be
pressing the gas pedals and breaks with her right foot — such
motion signatures should be easily detectible. However, if
such signatures are absent, it might be possible to conclude
that the owner of the phone is a passenger.

Of course, the problem is actually more complicated because
the user may carry the phone in her shirt pocket, or even in
her purse. If the phone is in the shirt pocket, we observe that
the driver is likely to turn slightly towards the left to pull
the seat belt, while the passenger would again perform the
opposite. Gyroscopes in modern smartphones are capable
of measuring rotational along a vertical axis, called yaw.
By observing the direction of the yaw, we should be able
to perform the driver-passenger classification. Of course,
the women’s purse is harder to detect; nonetheless, we find
that if the user throws her purse in with a reasonable mo-
tion, then the direction of the motion (left to right, or right
to left) can be used for classification. Finally, if a car has
some passengers in the rear seat, then its also necessary to



discriminate between the driver and the person sitting be-
hind the driver. Since both their motion signatures could
well be identical, we utilize the audio sound levels from the
car stereo as a way to discriminate between them. DDS
is an implemented system that aggregates a range of signa-
tures and combines them to achieve consistent classification.

Of course, identifying signatures for each of the micro-
activities is non-trivial — several discriminating patterns lay
hidden in the raw sensor signals and needed to be extracted
with precision. Moreover, the system needs to be developed
with energy constraints in mind. Finally, the system needs to
recognize when the confidence of classification is low, and
offer this failure notification to the user. This may be impor-
tant if the system is used for law-enforcement type applica-
tions. In such scenarios, it would be necessary to learn about
the confidence of classification. DDS prototypes a func-
tional system on the platform of iPhone OS 4.0 and Android
OS 2.2, and tests the driver detection performance through
2 cars and multiple users. Performance results demonstrate
a reasonably consistent accuracy of 85%, and failures oc-
curring mostly when women carry the phone in their purses.
While DDS is not ready for immediate deployment, we be-
lieve that the system invokes a sense of promise. Perhaps
more importantly, the individual micro-signatures in DDS
may themselves be useful building blocks to an emerging
app store, dedicated to vehicles.

2. DRIVER DETECTION

Driver detection enables several useful applications. As
mentioned in the previous section, one application is to con-
trol notifications based on user attention, since in-vehicle
information delivery is highly sensitive to user state [6].
Driver detection may also feed into other systems such as
personalized insurance, tracking carpooling, optimizing car-
pool lanes and incentives. Combined with detecting trans-
portation mode [10] it can be used to track users’ commuting
carbon footprints. For newly licensed teenage drivers, the
detection helps track how many hours of actual driving have
been performed, as distinct from total in-vehicle time spent
that includes being driven around by parents. Such infor-
mation may be used by parents to decide when the teenager
may be provided their own car.

2.1 Problem Outline

Our goal, simply stated, is to enable the mobile phone to
determine if its user, when in a car, is a passenger or a driver.
Several alternatives are possible to realize this goal. The car
itself has some sensors that could aid driver detection:

NFC: New phones have a near field communication (NFC)
radio (e.g., for mobile payments). Some cars also have NFC
radios for key-less entry. If the car’s firmware can be modi-
fied to use the NFC channel to inform the phone which door
was used, even if the user was not the one unlocking the car,
the phone can determine if the user is a driver. However,

only a small fraction of existing and new cars have NFC and
it is only installed on front doors.

Audio: Most cars have a speaker near each of the 4 corners
of the car. Each time the car starts, it can generate a sound
pattern that is emitted from the four speakers one after the
other. The phone can use its microphone to triangulate its
position with respect to the speakers. As with the previous
approach this requires car firmware to be changed, though
the hardware is more widespread than NFC.

However, given that phones are replaced every 2 or so years
while the median age for cars is 9.2 years in the US, methods
that require modifications to the car itself will be very slow
to deploy. On the other hand, deploying additional software
on smart phones is significantly easier. Thus, in DDS we use
only the phone’s built-in sensors. The key intuition behind
our approach is that the phone sensors include an accelerom-
eter that measures acceleration along three axes, and a gyro-
scope that measures rotation along three axis, denoted roll,
pitch, and yaw. These sensors can be used to detect user
movement patterns in an automobile to distinguish drivers
from passengers.

2.2 Challenges

We show experimental data to help identify key challenges
in detecting relevant user movements. One distinguishing
micro-movement is that of the driver’s right leg pressing the
gas or brake pedals, which is absent in passengers. Sensor
data for a short time duration around one such pedal press
are shown in Figure 1. Several issues are apparent:

Multiple Movements: The data has significant noise. The
motion of the vehicle causes the accelerometer and gyro-
scope outputs to change continuously. At a coarse gran-
ularity (Figure 1(a)), the signals are similar for the driver
and passenger. The pedal related movement is not a simple
sensor value but a specific pattern (Figures 1(b)) that varies
somewhat with each pedal press and occurs interspersed
with other patterns.

Phone Position and Orientation: The driver’s leg move-
ments can only be captured correctly when the phone is in
the correct pocket, the one on the right leg. The phone does
not capture these movements when placed in the left leg
pocket (Figure 1(b)) since the left foot is typically not used
for any pedals (except if the car is equipped with stick shift),
or any other pocket. Even when the movement pattern is
present, it can vary depending on how the phone is oriented
within the pocket: Figure 1(c) shows that the pattern is more
pronounced on the roll axis when the phone is carried in a
horizontal orientation and on the pitch axis when the phone
is vertical. Therefore, the solution must be flexible in terms
of phone position and orientation. Clearly, multiple distin-
guishing signals may have to be employed.
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Figure 1: Sensor data for driver and passenger movement patters, for a brief time interval around a pedal press
movement: (a) accelerometer (x-axis) and gyroscope (roll) about 60s surrounding the movement, (b) gyroscope roll
zoomed to about 8s near a pedal press, and (c) gyroscope data with two phone orientations showing that the signature

of interest can shift from one signal dimension to another.

Short-lived Signatures: The distinguishing movement oc-
curs only intermittently and the sensor output is mostly
similar for the driver and passengers due to the shared ve-
hicular motion. Thus, driver detection cannot be performed
on demand when a notification is to be provided. Instead,
the movement patterns must be detected as they occur. Con-
tinuously sensing and processing the data to look for signals
of interest would drain the battery at an unacceptable rate.
Also, the output must be provided in soft-real time, rather
than in an offline analysis mode, since the output is most
relevant when the user is driving.

DDS systematically combines multiple sensor signal pat-
terns to address the above issues.

2.3 Solution Design

The detection of multiple relevant micro-movements for var-
ious phone positions and orientations leads to multiple cases
that DDS design should address. Fortunately, simplifications
and commonalities across cases exist. Firstly, to overcome
the variable phone orientation, we map all signals to a ref-
erence orientation. The phone compass and accelerometer
data can be combined to get the earth’s gravity vector and
magnetic field which suffice to generate this mapping. The
Android OS and iOS provide APIs to support this calcula-
tion. Secondly, movement constraints help prune the search
space of movement signatures in each case. For example, a
driver enters the car using her right leg first while the front
passenger enters using her left leg first. The pedal press
should be searched only if the phone is in the leg pocket that
enters first.

Figure 2 presents a systematic combination of multiple sen-
sor signal signatures for various possible phone positions

(lower body pockets, upper body pockets, and handbag), to
determine if the user is a passenger or a driver.
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Figure 2: Decision flow: P = passenger, and D = driver,
denote the outputs. The “RIGHT” output of Handbag
L/R indicates passenger (omitted for clarity).

The sensor signatures used in the above diagram are:

Entry Swing: This block determines if the user is in the
right or left side of the vehicle cabin, for the phone carried
in a lower body pocket. The swing in the user’s lower body
reveals the direction of entry (left vs. right). Furthermore,
the movement can be separated into two significant parts to
determine if this signature occurred first on the leg closest
to the phone or the other one, revealing if the phone is in the
pocket on the innermost leg (the one that entered the vehicle
first) or not. Accelerometer, compass, and gyroscope data
are used.

Seat-belt: This block detects right vs. left side for the phone
carried in an upper body pocket. The users on the left will
wear their seat belt by first turning left and then turning
right as they pull the seat belt to the fastener. The motion
is reversed for the other side. Accelerometer, compass, and



gyroscope data are used.

Pedal Press: This block determines if the user’s leg is being
used for pressing the brake or gas pedals. The sensor data
is matched with pedal press patterns using a clustering al-
gorithm. This block is used only if the above block outputs
that the user is in the left side of the cabin and the phone is
in the user’s inner leg pocket. Accelerometer, compass, and
gyroscope data are used.

Handbag L/R: This block detects left vs. right for the phone
carried in a handbag, if the other two side detection blocks
fail. The detection is based on nearness to the driver location
and is similar to the front vs. rear detection described below.

Front vs. Rear: This block determines if the user is in
the forward or rear portion of the vehicle cabin. Some of
the branches from the above blocks directly reach the result
state (P or D, denoting passenger and driver respectively)
and this block is required only if the other branches were
inconclusive, or if the user was found to be a driver (so that
it can be discriminated against the rear passenger). This
block uses communication with a back-end cloud service
and could involve higher energy use. However, no direct
communication is assumed among the phones and hence
neither user is required to enter a password for Bluetooth
pairing. Microphone data is used.

The entry swing and seat-belt blocks operate in parallel since
the position of the phone on the user is unknown. If the
entry swing signature detection fails to detect a signature,
it is assumed that the phone is in the upper body area and
hence, the seat belt signature may succeed, and vice versa.
If neither succeeds, the handbag block is attempted. If that
fails, but vehicle motion is detected, the result is inconclu-
sive. The figure only shows the primary decision flow for
clarity. Other redundant paths are possible and may help to
reduce the error in overall operation. We assume a left hand
drive vehicle but the flow is easy to change if the user is in
a region where right hand drive vehicles are used, as may
be determined from the location, time-zone, and language
settings on the phone. The inference methods used for each
block and the trigger events to activate the sensors in an en-
ergy aware manner are described next.

3. SENSING ALGORITHMS

The processing blocks shown in Figure 2 are described in
detail below:

3.1 Building Blocks

Entry Swing: The entry swing detection is based on the
intuition that for a phone in a lower body pocket, the side-
ways movement indicates the direction for the car entry. Fig-
ure 3(a) shows the gyroscope roll during a swing, for entry
from left and right. The signal shape is similar for both right

and left entries, but the change in roll shows an opposite
sign. The data also shows two peaks with a different absolute
magnitude. These peaks in fact correspond to the two legs
entering the car. The data shown here is for the phone placed
in the inner leg pocket (the leg that enters the car first). For
the phone in outer leg pocket (not plotted for brevity), the
absolute magnitudes of the peaks are reversed. Effectively,
this sensor signature allows determining both the direction
of entry and if the phone is in the outer or inner leg pocket.

Human movements are not reproduced exactly each time
and vary across users and vehicles. To reliably identify the
signature, we use a support vector machine (SVM) to clas-
sify input data as matching right-entry, left-entry, or nothing.
The signal features used for training the SVM are: peak and
trough counts of three axes gyroscope data, variance of gy-
roscope values, and their derivatives taken over short time
windows. The peak and trough counts help distinguish the
entry direction. The variance feature helps since variance
is higher during the entry swing than at other times. The
derivative is also helpful because the rate of change is high
when the signature is present.

Seat-belt: The seat belt signature is based on the rotation of
the user’s body for wearing a set belt. In the global refer-
ence frame, the rotation of the body maps to the gyroscope
yaw. However, accelerometer and compass are also required
to orient the data from an arbitrary phone orientation to the
global reference frame. The rotation is only apparent for
the phone carried in an upper body pocket such as the shirt
pocket on the user’s chest; there is no significant rotation on
the lower body. A sample data trace of gyroscope yaw for
the time duration of a seat belt micro-movement is shown in
Figure 3(b) for users in the left and right sides of the car.
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Figure 3: Sensor data for driver and passenger move-
ments: (a) entry swing for left and right entry (gyroscope
roll), and (b) seat-belt for left and right vehicle sides (gy-
roscope yaw).

We use an SVM to classify input signals into left, right, and
no-signature cases. The SVM is trained using the following
features: first derivative of the yaw, variance of the yaw, and
the variance of the three axes accelerometer data. Interest-
ingly, even though the signal is most prominent along the
gyroscope yaw, the accelerometer data still helps as it con-
tains patterns related to getting and buckling the seat-belt
which distinguish the signal from no-signature cases.



Pedal Press: This block detects the leg movement when
pressing the brake or gas pedals. Sample data was shown
in Figure 1(b). This micro-movement only occurs on the
driver’s inner leg and is used only when the phone is sus-
pected to be in this position. The complete signature con-
sists of a sudden change in the pitch or roll when pressing
the pedal, followed by a period of no activity for the period
that the pedal is kept pressed, and then finally a change in
the pitch or roll, as the pedal is released. The movement
is more pronounced for the brake pedal than the gas pedal.
The features used for the pedal SVM are: second derivative
of the gyroscope pitch and roll and zero crossings for the
second derivative. The second derivative was found to be
most useful here because a pulse like pattern, corresponding
to increase in pitch/roll, followed by no change in values
and then a decrease of pitch/roll, is being detected.

Front vs. Rear: If the user is detected on the left, but the
phone is not in the correct position to detect the pedal press,
we need another way to determine if the user is the driver
or the rear left passenger. Among multiple possibilities
explored for this (some are summarized later under Discus-
sions section), we found that comparing the amplitude of
the turn signal sound worked most reliably. There are two
key challenges here. Firstly, the absolute amplitude of the
turn signal sound is not useful since it varies across cars
and due to other attenuating factors. Rather, a comparison
between the amplitude observed by the phones is needed.
Since direct phone to phone communication requires user
intervention (such as entering a Bluetooth PIN), we rely on
a cloud server to perform the comparison. The back-end
server must determine if two or more phones uploading data
to it are from the same vehicle based on the sensor data itself.
To this end, we include the phone location (coarse grained
location if fine grained location is not available), timestamp,
and accelerometer data, to aid in grouping phones from the
same vehicle. Among the phones that start the trip in the
same time window and region, accelerometer data helps
identify if the overall movement pattern of the phones is the
same, indicating the shared motion of the same car. Any of
existing signal matching methods may be used to detect if
the signals show the same pattern.In our implementation we
use frequency domain correlation.

A second challenge is that the turn signal sound is mixed
with other sounds such as road noise and music. These other
sounds are often equally loud in the front and rear parts of
vehicle cabin and do not have any distinguishing value. To
minimize their effect, we use a band-pass filter to separate
the turn signal sound. Of course, some frequency compo-
nents of other audio such as music that lie within this band
also pass through. Based on experimentally obtained record-
ings of the turn signals in multiple vehicles, the band pass
filter designed is listed in Table 1.

Sampling Stop band Pass-band Ripple

44.1kHz | < 2.9kHz, > 3.1kHz | 2.95-3.05kHz | 0.057501127785

Table 1: Band-pass filter for turn signal.

Handbag L/R: If the phone is in a handbag, the side de-
tection using entry swing and seat-belt is not applicable. If
only one user in the car is carrying a handbag and all others
have been identified to be passengers or driver, the phone
in the handbag is easy to identify. If the handbag is placed
on the rear seat or the trunk, DDS won’t work but in that
case we assume that the phone is inaccessible to the user
and therefore, driver detection is irrelevant. If the handbag
is placed in the driver area (near the left foot or cup-holder
area) and another user is also using a handbag, driver de-
tection is important. To distinguish the phone in a handbag
being closer to the driver area than the passenger area, we
again use turn signal audio comparison similar to the above
block.

Audio data is uploaded if the user state is not determined
by the other blocks. Also, if the user is determined to be a
driver, data is still uploaded to enable any other user in the
car to correctly determine their state. If the back-end server
receives only one upload from a vehicle, it is automatically
assumed to be the driver.

3.2 Event Triggers

DDS also needs mechanisms to activate the sensing and
inference at appropriate times since battery constraints pre-
vent continuous sensing. We use a duty-cycled approach to
detect when the first trigger event occurs and then activate
sensors from that trigger event for a duration that ends based
on another trigger event, indicating that sufficient data has
been collected. The trigger events used are:

Walking and Pause: Detection of walking using accelerom-
eter data has been used in several prior works and we use
a simple amplitude based method to detect walking. The
detection is duty cycled: the sensor is activated for 1s every
60s. More sophisticated methods may allow reducing the
active time from 1s. Walking may not be detected if it lasts
shorter than 60s, and this period may have to be reduced for
users who walk less than 60s to reach their car. When walk-
ing is detected, the accelerometer is turned on continuously
to detect when the user pauses (to open a car door if they
were walking to a car).

Vehicular Motion: The start of vehicular motion is also
easy to detect from accelerometer data and has been used in
prior works [10].

These trigger events are used to start/stop sensor data collec-
tion and activation of detection blocks, as shown in Figure 4
in the form of a time line. The front vs rear block and hand-
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Figure 4: Time line for sensing based on trigger events.

Timeouts: In addition to the events, certain timeouts are
employed to stop sensors and inference methods. The gy-
roscope data collection is stopped 15s after the vehicular
motion is detected. The duration of 15s was chosen to en-
sure that the user wears their seatbelt, though in most cases,
users wear the seat belt before the vehicular motion starts.
Pedal press occurs within this time as well. Audio data col-
lection is stopped after a duration A,. The value of A, is
determined at run time based on the number of filtered audio
samples above a threshold magnitude, to ensure a robust
comparison. If the user was not walking to a car, no DDS
signatures occur after the pause and the system shuts down
after a timeout.

An example data trace from a phone carried in an upper
body pocket is shown in Figure 5, illustrating the detec-
tion of walking and vehicular motion trigger events on
accelerometer data and one of the sensor signals used for
driver-detection, in this case the gyroscope yaw, indicating a
seat-belt signature.
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Figure 5: Trigger events and a sensor signature for phone
carried in upper body pocket.

4. EVALUATION

Experimental Data Collection: The DDS system is eval-
uated with sensor data collected on Android OS 2.2 based
Nexus Ss and iPhone OS 4.0 based iPods. The test data was
collected in realistic settings from three distinct users with
the phone carried in different positions on their body with-
out controlling the phone orientation. The car was driven on
routine routes that those users take. The in-vehicle music
player was used. Multiple data traces were collected from
each user, leading to 40 or more samples for each micro-
movement.

4.1 Accuracy

One goal of the experiments is of course to quantify the error
for each of the sensing blocks. Another is to verify if the
inference methods trained on one user will allow the DDS
system to work on another user, allowing it to be used with-
out per user training. To validate this, all results presented
are obtained through cross validation tests that exclude the
test user’s data from training.

Entry Swing: Since this micro-movement is present in al-
most all traces collected, we have over 400 trials to test. As
mentioned, training data from a given user was not included
when testing test samples from that user. In each case 80%
of the data is used for training and the remaining 20% for
testing. To remove the effect of any bias in certain samples,
100,000 of the different possible splits among the samples
are considered, each leading to one test run. The cumulative
distribution function (CDF) of entry swing classification ac-
curacy is shown in Figure 6 — average accuracy = 88.99%.
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Figure 6: Entry-swing accuracy CDF.

Seat-Belt: The seat-belt signature is evaluated similarly.
Again performing cross validation on all user samples col-
lected, and measuring error over all runs of the data splits,
we obtain the accuracy CDF shown in Figure 7. The accu-
racy is high across all runs and the mean accuracy is 91.08%,
also marked in the figure.

Pedal Press: Following the same cross validation process,
the CDF of correct detections is shown in Figure 8, and the
detection has a mean accuracy of 89.78%.

Front vs. Rear: The first step for this block is detecting
which uploads come from the same car. It is based on match-
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Figure 7: CDF of correct seat-belt micro-movement de-
tection, cross validated across all users.
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Figure 8: CDF of correct pedal press micro-movement
detection, cross validated across all users.

ing location area, time-window of the data timestamps, and
signal shape of the accelerometer data. Matching time and
location windows is trivial and hence we stressed the system
by grouping only based on accelerometer. We take 100 ac-
celerometer traces from different trips and treat each trace as
an upload from a distinct phone. We divide these traces into
groups of up to n simultaneous trips with 2 phones within
the same vehicle for each trip. The matching algorithm at-
tempts to identify the n correct pairs out of the 2n traces
(®nCy possible pairs). Measuring the error as the number
of false positives and false negatives determined by the al-
gorithm, Figure 9 plots the accuracy achieved with varying
n. Two different lengths of the uploaded trace, 30s and 60s,
are tested. With the accelerometer sampled at 50Hz, this
amounts to 1500 samples and 3000 samples respectively.

100 ]

95

90

Accuracy (%)

85

—%— 30s

—*— 60s

80

75
2 4 6 8

Number of simultaneous trips (n)

Figure 9: Cloud server matching of uploaded data traces
from multiple phones.

The second processing phase compares the filtered au-
dio data amplitude between the driver and rear passenger
phones. Incorrect results may occur due to several factors
such as the driver’s phone being enclosed in a pocket made
from thicker and more sound absorbent material than the
passenger’s pocket. We collected test data with both the
music on and not, as well as trips on freeways where road
noise is higher. Denoting the cases with Low volume music
and Low road noise as LL, High volume music and Low
road noise as H L, and so on, we get four cases shown in
Figure 10. In each case we consider the phones being inside
pockets or outside of any pockets, as well as a worst case
scenario for amplitude comparison: driver’s phone is inside
the pocket but the passenger’s phone is outside (implying
that the driver’s phone suffers extra attenuation). The ra-
tio of the maximum absolute magnitudes measured by the
front phone to that of the rear phone is shown in Figure 10.
Correct detection results when this ratio is greater than one
(horizontal line in the figure). The values shown for each
case are averaged over multiple trials. The mean accuracy
across all trials was 95.83%. In the H H scenario where the
turn signal sound is almost hidden in the music and road
noise, we did see a ratio lower than one in some of the trials,
when the rear passenger’s phone is outside the pocket while
the driver’s phone is inside.
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Figure 10: Front vs. Rear Detection: Ratio of audio am-
plitudes for driver and rear passenger in different sce-
narios. L indicates low and H indicates high; the first L
or H refers to music and the second to road noise.

Handbag: As mentioned DDS ignores cases where the
handbag is placed away from the driver (rear seat or trunk)
as then the phone is inaccessible to the driver. Also, the
handbag block is only used if the driver and at least one
passenger carry their phone in a bag since otherwise, the
correct detection on all other users will indicate the role
for the phone in the handbag. In this scenario, the driver’s
handbag can be placed either in the cup-holder area or on
the floor near the driver feet. The phone may also be placed
directly in the cup-holder without a bag.

Three cases arise based on the behavior of the passenger
using a handbag for their phone: (i) the passenger handbag



is placed markedly farther from the driver console (turn sig-
nal sound source) compared to the driver’s handbag (e.g.,
driver’s phone in feet area, passenger phone on rear seat),
(i1) both phones are a similar distance from the driver con-
sole though the passenger phone is farther (e.g., both driver
and front passenger place their handbags near their left foot
respectively), and (iii) the phones are placed together (e.g.,
both in the center cup-holder area).

Case (i) is expected to work accurately similar to the front
vs rear detection block, as the audio intensities received at
the two bags vary significantly. For evaluating case (ii), we
once again collected the audio data, with music on and not,
and with the car driven on roads with high and low road
noise. Again using L and H respectively to indicate Low
and High road noise or music volume, we tabulate the ratio
of the audio intensity of the driver to that of the passenger
in Table 2. We consider the cases when both the driver and
passenger’s phones are inside a bag, both the phone’s are
outside, and the worst case scenario: the driver’s phone is
inside a bag and the passenger’s phone is outside. When the
phones are inside a bag, they are placed near the left foot
(for both driver and passenger), and when the phones are
outside, the driver’s phone is placed in the cup-holder and
the passenger’s phone is place on their lap. Ratios greater
than one imply correct detection. We see that while most
cases are addressed correctly, the detection fails in a couple
of the worst case settings. Similar experiment for case (iii)

Music, Driving level n Amgllllttu de I];l_tllz’l)_ Out
LL 6.2305 | 1.3504 1.5535
LH 1.4006 | 2.2279 0.6498
HL 1.4477 | 1.0003 0.0532
HH 1.2301 | 8.2485 1.1887

Table 2: Audio intensities when phones far apart .

revealed that, as expected, this method cannot work reliably
when both phones are equidistant from the driver console.

S. RELATED WORK

The widespread availability of sensors in mobile phones is
enabling interesting sensing applications, including measur-
ing traffic [11] and quantifying environmental impact [8].
Our work adds a new activity and application.

User activity sensing has been addressed in several works [1,
7]. We expand this repertoire to include the driving activ-
ity. Human movements have been sensed for multiple pur-
poses in health-care [2]. However, their use driver detection
is novel. Commercial products for disabling phone use in car
are available [9] but they do not distinguish between drivers
and passengers.

6. CONCLUSIONS

The design of DDS demonstrates how a small set of sen-
sors, not mounted or worn in a special manner, and used in a
noisy environment, can still be used to improve our informa-
tion about an important user state. Experimental evaluations
on real user traces showed that DDS achieves a practically
useful accuracy in a majority of phone carrying positions,
without requiring individual user training. The design also
uses triggers to significantly reduce the energy overhead, il-
lustrating a useful design principle for sensing applications
that operate continuously.
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