MobiCom 2009

Beijing, China

Order Matters: Transmission Reordering in Wireless Networks

Justin Manweiler, Naveen Kumar Santhapuri, Souvik Sen, Romit Roy Choudhury, Srihari Nelakuditi, Kamesh Munagala

Outline

Message-in-message (MIM), a new physical layer capability

The potential of an *MIM-aware* link layer

Shuffle, an MIM-aware architecture

For enterprise WLANs

Frame Synchronization

Transmissions start with preamble (PLCP)
Receiver uses PLCP to "lock" onto signal

Frame Synchronization

Transmissions start with preamble (PLCP)
Receiver uses PLCP to "lock" onto signal

- If stronger signal arrives later:
 - May cause collision
 - Neither packet received

- If stronger signal arrives later:
 - May cause collision
 - Neither packet received

- If stronger signal arrives later:
 - May cause collision
 - Neither packet received

- If stronger signal arrives later:
 - May cause collision
 - Neither packet received

- If stronger signal arrives later:
 - May cause collision
 - Neither packet received

- If stronger signal arrives later:
 - May not cause collision
 - Receiver may resynchronize

- If stronger signal arrives later:
 - May not cause collision
 - Receiver may resynchronize

- If stronger signal arrives later:
 - May not cause collision
 - Receiver may resynchronize

- If stronger signal arrives later:
 - May not cause collision
 - Receiver may resynchronize

- If stronger signal arrives later:
 - May not cause collision
 - Receiver may resynchronize

- If stronger signal arrives later:
 - May not cause collision
 - Receiver may resynchronize

- If stronger signal arrives later:
 - May not cause collision
 - Receiver may resynchronize

Summary

Summary

Summary

Order matters

Order doesn't matter

SINR

8

Motivating Example

Uncontrolled ordering

Uncontrolled ordering

Uncontrolled ordering

Corrected ordering

Corrected ordering

Corrected ordering

Corrected ordering achieves concurrency

MIM-awareness

MIM-capable hardware available today

Validated on Atheros chipset

Current MAC layer unaware of MIM

Ordering happens accidentally

Can order-awareness improve throughput?

How much gain from MIM? Integer programming analysis (optimal NP-hard)

Link scheduling with and without MIM: improved spatial reuse higher throughput

How much gain from MIM? Integer programming analysis (optimal NP-hard) Practical heuristics extract most available gain

Number of Clients

Shuffle

An MIM-aware link-layer for the enterprise

Shuffle: exploiting the EWLAN

Conflict Diagnosis

- Learn link conflicts over time
- Maintains an MIM-aware interference map

Packet Scheduling

Conflict Diagnosis

- Learn link conflicts over time
- Maintains an MIM-aware interference map

Packet Scheduling

Prescribes ordered transmission schedule

Conflict Diagnosis

- Learn link conflicts over time
- Maintains an MIM-aware interference map

Packet Scheduling

Prescribes ordered transmission schedule

- Achieve desired time synchronization
- Loss detection, recovery

Conflict Diagnosis

- Learn link conflicts over time
- Maintains an MIM-aware interference map

Packet Scheduling

Prescribes ordered transmission schedule

- Achieve desired time synchronization
- Loss detection, recovery

In the steady state...

Shuffle Evaluation

Integer programming analysis

Characterizes potential for gain

Simulation (in paper)

Gains from scale

Testbed implementation

Validates deployment feasibility

Testbed Deployment

Testbed Deployment

Fixed rate comparison

Shuffle achieves higher delivery ratios than TDMA

Fixed rate comparison

Shuffle achieves higher delivery ratios than TDMA

Fixed rate comparison

Shuffle achieves higher delivery ratios than TDMA

Multiplexing experiments Under time-varying channel

Multiplexing experiments Under time-varying channel

Multiplexing experiments Under time-varying channel

Motivating example

Systematic "classroom" test Characterizes gains in a practical scenario

Limitations and Future Work

Complications to the interference map

- External network interference
- Client mobility

Delays

- End-to-end latency
 - Jitter from queue reordering

Limited testbed scale

Related Work

Capture and MIM

- Analysis/model of capture [A. Kochut et al. ICNP 04]
- Capture/MIM thresholds [J. Lee et al. WinTECH 07]

Spatial Reuse

CMAP [Vutukuru et al. NSDI 08]

EWLANs and Scheduling

- DAIR [P. Bahl et al. HotNets 05]
- CENTAUR [Shrivastava et al. MobiCom 09]

Conclusion

- MIM expands capture potential
- Transmission reordering provides opportunities for enhanced concurrency
- Naive MACs such as 802.11, TDMA are unable to enforce a desirable link order
- Shuffle presents scheduling solution for enterprise environments

Questions, comments?

Thank you

Duke SyNRG Research Group http://synrg.ee.duke.edu

μ sec-precision timing and sync

Synchronization

(Controller \leftrightarrow AP)

- Ethernet propagation
- Switching
- Processing latency

Timing

 $(AP \rightarrow client)$

- Lack of HW support
- Coarse OS interrupts

Centralized AP operation

Central controller optimizes concurrency

