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ABSTRACT

We consider the problem of speech enhancement in earphones. While microphones
are classical speech sensors, motion sensors embedded in modern earphones also
pick up faint components of the user’s speech. While this faint motion data
has generally been ignored, we show that they can serve as a pathway for self-
supervised speech enhancement. Our proposed model is an iterative framework
in which the motion data offers a hint to the microphone (in the form of an
estimated posterior); the microphone SNR improves from the hint, which then
helps the motion data to refine it’s next hint. Results show that this alternating
self-supervision converges even in the presence of strong ambient noise, and
the performance is comparable to supervised Denoisers. When small amount of
training data is available, our model outperforms the same Denoisers.

1 INTRODUCTION

Speech enhancement/denoising is of growing interest in the context of modern earphones. Since
users are speaking to their earphones in public environments, the SNR of the recorded speech is often
weak. This is not only due to heavy ambient interference but also because users tend to speak softer
in presence of others nearby. A rich body of work has investigated the general speech denoising
problem, however, a modest amount of clean data is still needed to train personalized Denoisers
(Schwartz, 2022). Eliminating the need for clean data can relieve users from separately training their
earphones. This paper identifies an opportunity for self-supervised speech enhancement through
multi-modal sensing, obviating the need to collect noise-free speech data.

Today’s earphones include inertial measurement units (IMUs) that sense motion, vibration, and
orientation with a sasmpling rate of ≈ 400 Hz. IMUs help with sensing user activities such as
jogging, or for detecting when the user has worn the earphone (so audio can be automatically played
or paused). Interestingly, when users speak, we find that IMUs can also pick up faint vibrations from
the speech signals. These vibrations essentially conduct from the throat to the skull (Jabra, 2022),
becoming faint and distorted when they finally arrive near the ear. Nonetheless, these faint and low
bandwidth IMU signals are un-interfered by background noise Blue et al. (2013). This is in sharp
contrast to a microphone that senses the user’s speech at full bandwidth of 44 kHz but is heavily
corrupted by background noise (see Figure 1). While Denoisers can suppress some of the noise, they
need a modest amount of clean data, especially when the noise is non-stationary (Wang and Chen,
2018).

This paper asks: can the faint but noise-free IMU signal facilitate a self-supervised approach to
speech denoising? In fact, for any signal denoising task, is information from a second sensing
modality as effective as having clean training data with a single modality?
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Figure 1: (a) Microphone recording without interference, (b) Microphone recording with interference,
(c) IMU recording from earphone. (d) Zoomed in view of IMU signal between [0, 200] Hz.

We propose AlterNet, a two-stage architecture that develops a cooperation between the IMU and
the microphone, so each modality can teach and learn from the other. The two stages correspond
to a Translator and a Denoiser that operate on the Short Time Fourier Transform (STFT) of the
microphone and IMU data. Briefly, the Translator up-samples the distorted IMU signal to higher-
resolution audio, crudely localizing the user’s speech in the STFT domain. This localization is
extremely crude since the Translator has no clean speech that it can optimize towards; it must use
the noisy microphone signal as it’s reference. Nonetheless, this crudely localized speech now serves
as a reference to the Denoiser, allowing it to slightly improve the speech SNR in the microphone’s
recording. This slightly enhanced speech then serves as a new reference to the Translator, which
localizes the speech slightly better. The iteration converges to an SNR-enhanced speech signal at the
output of the Denoiser. Importantly, the alternating iteration is free from clean training data – the
corrupt data in the two modalities help each other out of their corruption.

AlterNet inherits the Expectation Maximization (EM) framework and combines it with deep
learning. The microphone data is modeled as a mixture of the user’s speech S and the background
interference B; for every time-frequency (t, f ) bin in the STFT, we model the mixture’s composition
using a hidden random variable Zt,f = {S,B}. Denoising can be viewed as first estimating
p(Zt,f = S), ∀t, f , and then using the probabilities as a 2D mask to filter out speech from the noisy
microphone data. Unfortunately, given the non-stationary behavior of S and B, EM is unable to
estimate Zt,f .

The IMU data on the other hand predominantly contains the same user’s speech. Although the speech
is non-stationary, it presents an opportunity to learn the user’s voice fingerprint; this fingerprint can
pose as a proxy for the initial posterior Z(1)

t,f . Learning the fingerprint is not easy either because there
is no clean user-speech to train against. Hence, our Translator uses the corrupt microphone data
as the reference. The hope is that even a crude voice fingerprint can help to improve the audio SNR,
and that SNR-improved audio can be used as a reference to train the Denoiser. A slightly better
Denoiser offers a better reference to the Translator, which then generates a better posterior
Z

(2)
t,f .

Our surprise in the paper arises from how the very faint and distorted IMU data, which learns a very
crude fingerprint (or posterior), can still guide the AlterNet architecture to convergence. While
this is an empirical example of success, we believe the core idea could lead to more general ideas of
multi-modal self-supervision. Our future work is focused on understanding this generalization.

Summary of Results: With help from 7 volunteers, we gathered IMU and microphone data from
earphones and injected interference from a public audio dataset (speech and noise) into the microphone
data stream. The self-supervised AlterNet model is trained on this unclean dataset (at varying
SINR levels). We evaluate the final denoised signal using two metrics: word error rate (WER) from
an automatic speech recognizer (ASR) (Yu and Deng, 2016) and scale-invariant signal-to-noise ratio
(SI-SNR). Results show that in terms of WER (KWS-35), self-supervised AlterNet is comparable
with the supervised audio Denoiser (trained with clean voice data), achieving less than 5% difference.
When we allow AlterNet to also train on clean signals, supervised AlterNet exceeds self-
supervised AlterNet by 16%. In closing, we find that IMU extends one of two advantages — we
can either choose to improve denoising performance or relieve the user from collecting clean voice
data.
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2 SELF-SUPERVISION WITH EXPECTATION MAXIMIZATION (EM)

2.1 PROBLEM STATEMENT

We consider two input streams: a high-resolution audio signal Xm from the microphone and a
low-resolution surface-vibration signal Xu from the IMU. Since all recordings are from on-the-
fly everyday environments, Xm is composed of three parts: the target speech signal, Xm,s, the
background interfering signals from nearby people, Xm,b, and the hardware/ambient noises, Xm,n.
Thus, Xm = Xm,s +Xm,b +Xm,n. We assume no knowledge of Xm,s, Xm,b, or Xm,n.

The IMU signal Xu consists of two parts: the speech vibration from the user, Xu,s, and the hardware
noise, Xu,n. We assume no knowledge of either Xu,s or Xu,n. Also, since the vibrations are
essentially an outcome of the user’s speech, Xu,s is a non-linear, low-dimensional projection of Xm,s,
i.e., Xu,s = f(Xm,s). This projection is expected to differ across users, depending on each user’s
bone, muscle, and tissue conduction properties. Using Xm and Xu as input, AlterNet’s output is
expected to be a denoised high-resolution audio signal X̂m,s, containing only the target user’s speech.

2.2 EM BACKGROUND

AlterNet inherits ideas from Expectation Maximization (EM) (Moon, 1996). Briefly, recall that
EM assumes the observed samples X = {x1:N} are drawn from a mixture of K latent distributions
z1:K . Each distribution zk is described by parameters θk. The samples X = {x1, x2, ..., xN} and the
number of distributions K are known, and the goal is to estimate: (1) the probability of each sample
xn belonging to a distribution zk, denoted as Z, and (2) the parameters θk for each distribution.

The EM algorithm estimates (1) and (2) iteratively. In the first expectation step (E-step), we estimate
Z by computing the posterior distribution of assignment, p(Z|X, θ), across all the samples X . In
the second maximization step (M-step), the algorithm estimates θ by maximizing the expected
likelihood log p(X,Z|θ). Combining (1) and (2), EM iteratively optimizes θ with

θ(i+1) = argmax
θ

EZ∼p(Z|X,θ(i)) [log p(X|Z, θ) + log p(Z|θ)] (1)

where θ(i) denotes the estimate of θ at the i-th iteration. EM must begin with initial values of θ1:K
and the priors p(zk) for each latent distribution, and the algorithm’s convergence is known to be
sensitive to this initialization. A comprehensive discussion on EM is available in (LinEM, 2012).

2.3 MODELING SELF-SUPERVISION USING EM

In mapping AlterNet to EM, we have the noisy microphone and IMU as the input data X =
{Xm, Xu}. We denote a time-frequency (TF) bin of the speech Xm as Xm(t, f). The latent
variable Zm(t, f) tracks whether Xm(t, f) belongs to the target speech S or not. The probability
p(Zm(t, f) = S) models the fraction of speech S in that TF-bin. Thus, Zm(t, f) is essentially a
mask that filters out the user’s speech from the STFT of Xm.

Our goal is to learn the posterior distribution of Zm(t, f), however, given that we do not know the
parameters θ of the sources S and B, the posterior cannot be calculated. This is where we use the
IMU data Xu to construct candidate posterior distributions; the optimal posterior is the one that best
matches Xm. The Translator learns θT to compute this posterior.

Figure 2 attempts to visualize the idea. The green TF-bins on the left are the unpolluted (but heavily
aliased) speech signals in Xu. The Translator learns to “un-alias” Xu to construct a complete
STFT (Zm(t, f) = S shown in the middle) that best matches Xm (shown on the right). Since Xm is
heavily polluted by interference marked in red, the match is very crude at this point. Said differently,
the Translator empirically learns a crude posterior by minimizing a loss between Zm and Xm.

Given this posterior, we can now maximize the expected likelihood by training a Denoiser with
parameter θD. The Denoiser maximizes the joint probability, p(Xm(t, f), Zm(t, f) = S | θD).

2.4 LEARNING THE POSTERIOR DISTRIBUTION

To learn the posterior, we design the Translator as an auto-encoder that takes Xu as the input
and outputs the posterior p(Zm(t, f) = S). Two observations guide the Translator design:
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Figure 2: Translator diagram for estimating the posterior of the target speech. † Translator optimizes
for the denoised audio as a reference starting from the second cycle.

(a) The Translator does not take the noisy audio Xm as the input because we intend to force the
Translator to model only the target speech posterior Zm(t, f) = S. If Xm is given as the input,
the output may get biased by the interference.
(b) The ground truth to train the Translator is the denoised signal from the previous iteration
X̂i−1

m,s . Intuitively, if the target speech has high amplitude in a T-F bin, p(Zm(t, f) = S) will be
assigned a proportionally higher probability.

For the first iteration, we use the noisy speech signal Xm as the ground truth. Given the interference is
drawn from uncorrelated sources (discussed more in Section 2.6), the posterior begins to localize the
speech TF bins. Needless to say, the correlation is very weak at this point. To map the Translator
output to a probability p(Zm(t, f) = S), we apply a Sigmoid function to the Translator’s
output. We denote this posterior as a mask M(t, f). When M(t, f) is perfectly estimated, the target
speech can be retrieved by Xm ⊙M , where ⊙ denotes the element-wise product. Thus, Stage 1 in
AlterNet can be formally expressed as follows:

θiT = argmax
θT

∏
j

∏
t,f

p(Zj
m(t, f) = S | Xu, X̂

i−1
m,s , θT ) (2)

M j,i(t, f) = p(Zj
m(t, f) = S|X, θiT ) ≈ Sigmoid

(
fθi

T
(Xu)

)
(3)

where fθi
T
(Xu) is the converged Translator after the ith iteration, and j = {1, 2, . . . , N} is the

sample index. Note that we do not explicitly model the distribution of background interference B
because the IMU signal Xu does not capture B. We revisit this point in Section 2.6 and present
Translator/Denoiser architecture in Section 3.

2.5 LEARNING TO MAXIMIZE THE EXPECTED LOG LIKELIHOOD

We design a Denoiser to maximize the expected likelihood, Ez

[
p(X,Z|θ)

]
. The Denoiser

takes X = {Xm, Xu} as input and outputs a denoised speech, X̂m,s. To train the Denoiser, we
use the ground truth as Xm ⊙M , which is essentially the noisy microphone recording masked by the
posterior. The Denoiser is essentially maximizing an approximate expected likelihood as follows:

θiD = argmax
θD

M ilog p(Xm ⊙M i, Xu |M i, θD) (4)

The objective is an approximate of the expected likelihood because the expectation is over a single
term, p(Zm(t, f) = S). Since we cannot model/learn the interference, we do not have a term
corresponding to p(Zm(t, f) = B).

Finally, since the Denoiser also accepts Xu as an input, we learn a latent embedding of Xm and
train this embedding against Xu. Hence the complete loss function for the Denoiser is composed
of both the masked audio Xm ⊙M and the IMU data Xu (more details in Section 3.2). Once the
Denoiser θiD has converged in the ith iteration, its output X̂i

m,s becomes the reference signal for
training the next iteration of the Translator, θi+1

T . The iterations continue till convergence.

2.6 DISCUSSION ON INTERFERENCE

(1) The EM algorithm models the mixture as K distributions parameterized by θ1:K . In AlterNet
we only learn the parameters of the user’s voice and ignore the background interference in the
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expected likelihood. This is because the interference in our application is drawn from diverse on-
the-fly environments (e.g., other people’s speech, music, everyday activity noise, diffused noise,
etc.) and modeling this distribution is intractable. This means that in our expected likelihood, the
term corresponding to p(Zm(t, f) = B) is assumed to be constant, essentially pretending that the
interference is drawn from a uniform distribution. If the interference happened to be another person’s
speech, or some tractable distribution, various other techniques become relevant, including source
separation networks (such as Conv-TASNET (Luo and Mesgarani, 2019) and others).

(2) AlterNet assumes the interference across the training samples to be uncorrelated (or weakly
correlated at best). If the interference were correlated, the Translator could easily overfit the
interference distribution in the training data. This would affect the posterior in the first cycle, further
misguiding the downstream convergence (given that EM is known to be sensitive to its initial posterior
estimation). In AlterNet, the IMU data and the uncorrelated interference alleviate this concern.

3 NETWORK ARCHITECTURE

Translator design: Figure 3 shows the proposed network architecture, with the Translator on top
and the Denoiser below it. The Translator’s input is the vibration signal Xu at 400Hz; the output
is the posterior estimation M . Since M needs to be at 4 or 16 kHz, the Translator’s task can be
viewed as super-resolution. This large up-sampling factor, from 400 Hz to 16 KHz, is prone to
overfitting with a conventional auto-encoder. Hence, we design the network as a guided autoencoder
to inherit earlier successes in (Lai et al., 2017).

IMU vibrations 𝑋𝑢
IMU

spectrogram

Guided 
auto-encoder Mask 𝑀

Translator: 𝑋𝑢 → 𝑀

Denoiser: (𝑋𝑚, 𝑋𝑢) → ෠𝑋𝑚,𝑠

Noisy audio 𝑋𝑚
& IMU vibrations 𝑋𝑢

Audio & IMU
spectrogram Deep auto-encoder

Denoised audio ෠𝑋𝑚,𝑠

ℒ𝑡𝑟𝑎𝑛𝑠

Masked noisy 
audio 𝑋𝑚 ⊙𝑀

ℒ1𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑟

⋮

ℒ2𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑟

Figure 3: Proposed AlterNet architecture composed of a Translator on top and Denoiser at the
bottom, using each other’s output as the reference for minimizing the loss function.

The idea is to up-sample the signal in multiple stages, each stage with a small up-scaling factor and a
corresponding stage loss. Using a 3-stage decoder, we up-sample the STFT of Xu from 400Hz to
800, 3200, and finally 16KHz. The final loss is regularized by the individual stage losses to curb
the decoder from overfitting.

Denoiser design: The Denoiser’s input is both Xm and Xu and the output is the denoised signal
X̂m,s. The lack of clean data Xm,s precludes an end-to-end network that maps (Xm, Xu) to X̂m,s.
However, we know that a consistent mapping exists between audio and IMU, i.e., Xu = fimu(Xm,s),
dictated by the bone channel that conducts the throat’s vibration. To leverage this, we design an
auto-encoder (AE) using only the microphone recording Xm as input, and forcing part of the latent
space to match the IMU signal Xu.
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Figure 4: Denoiser architecture: The audio is encoded into a latent space, one part of which mimics
the IMU and the other parts are representations of high-frequency speech signals and interference.

We design the AE’s latent space as L = {Lu, Lm} (see Fig. 4) and force Lu to match the IMU
data Xu (loss terms reported in the next section). The remaining Lm = L \ Lu is allocated
to represent the “gap” between audio and IMU. This gap arises because the IMU only picks-up
(aliased) lower-frequencies of the user’s voice and is unable to sense the higher-frequency voice
harmonics, and neither the interference signal. Hence, we model Lm = {L(hi)

s , L
(all)
b }, where L

(hi)
s

is a representation of the target’s high frequency components, and L
(all)
b is a highly compressed

representation of all the background interference. Assuming the interference is uncorrelated to the
target user’s speech, we add a loss term between L

(all)
b and the IMU signal Lu to enforce the average

contrast. We also add another loss term between L
(hi)
s and Lu to enforce their correlation. Finally, the

decoder uses only {Lu, L
(hi)
s } to reconstruct the denoised audio signal, X̂m,s, and trains it against

the Translator’s output, X ⊙M .

The Denoiser is almost ready, except for one small detail. To utilize the IMU data Xu during test
time as well, we concatenate Xu as a second channel, alongside Lu. The 2 channels serve as the
first layer of the decoder. To match the dimensions, Lm progresses through one additional layer of
decoding. Although we design Lu to match Xu, it’s important to concatenate Xu because it does
not contain any background interference. Since Lu and Xu both represents the low-frequency target
signal, subsequent layers will learn from both modalities.

3.1 TRAINING

The Translator begins by training against the noisy audio Xm. After Nt = 25 epochs, we freeze
the Translator and use its output (i.e., the masked audio Xm ⊙M ) to train the Denoiser for
the next Nd = 75 epochs. We denote (Nt +Nd) epochs as one training cycle. We then start the next
cycle by freezing the Denoiser and using the denoised signal X̂m,s from the previous cycle to train
the Translator. The iteration is performed for C = 3 cycles.

Fig. 5 shows snapshots from the start and end of the training process. The first vertical column in
Fig. 5 plots the spectrogram of clean target speech Xm,s on top, and the interfered audio Xm at
the bottom. The top of the second column shows the Translator’s mask after the first training
cycle; evidently, IMU offers only a crude map M at this time. The bottom of the second column
plots the Denoiser’s output when it has been trained using the masked audio, Xm ⊙M . The top
of the third column shows the mask after the last training cycle — the improvement is visible. The
Translator converges well because the interference is uncorrelated, preventing the Translator
from overfitting to the interference. Finally, the bottom of column 3 shows the denoised audio X̂m,s

using the final mask; this is AlterNet’s final output.

3.2 LOSS FUNCTIONS

Translator’s loss function: Aggressive up-sampling is prone to overfitting, so the Translator incorpo-
rates a loss function at each stage of the guided auto-encoder. The final loss is a convex combination
of Mean Absolute Error (MAE):

Ltrans = Ex∼p(x)

∑n
i=1 wi ||D−1(x )i − T (x )i ||1∑n

i=1 wi
(5)

where n is the number of scale-up stages; wi is the weight for stage i ; D−1(x )i is the Denoiser’s
output, down-sampled to match stage i ; and T (x )i is the Translator’s output after stage i .
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Figure 5: (Column 1) Spectrogram of clean target signal Xm,s on top, and the
noisy microphone signal Xm at the bottom. (Column 2) Translator’s mask after
the first cycle on top, and the Denoiser’s output after the first cycle at the bottom.
(Column 3) Translator’s mask after the last cycle on top, and the Denoiser’s
output after the last cycle at the bottom.

Figure 6: IMU
placement for
data collection

The Denoiser’s loss function is composed of three terms: Ldenoiser = LH + λ1 ∗ LL + λ2 ∗ LC

where LH denotes the audio reconstruction loss; LL is the IMU loss from the latent space; LC is the
correlation loss, and λ is the weighing scalar. The loss functions are defined as:

LH = Ex∼p(x)||T (x )−D(x )||1 LL = Ex∼p(x)||Lu −Xu||1 (6)

LC = Ex∼p(x)

[ ∑
i,j

∣∣ ρcorr(Xu(i), L
(all)
b (j)

) ∣∣ −
∑
i,k

∣∣ ρcorr(Xu(i), L
(hi)
s (k)

) ∣∣ ] (7)

The Correlation loss LC aims to capture the uncorrelated relationship between the IMU signal Xu

and the interference embedding L
(all)
b , as well as the correlation between the IMU Xu and the

high frequency components of the speech, L(hi)
s . The negative sign for the second term indicates

that higher correlation reduces the loss function (and vice versa for the first term). In the equation,
i, j, k are the indices of the dimensions of Xu, L(all)

b , and L
(hi)
s . We calculate the absolute value of

correlation coefficients to account for harmonic behaviors in the speech signals.

4 EXPERIMENTS AND RESULTS

Dataset Construction. We recruit 10 volunteers and ask them to wear normal earphones and a
separate IMU (Fem, 2022) near their ears – Figure 6 shows the set-up. A separate IMU is needed
since today’s earphones do not make the raw IMU data accessible. Each volunteer speaks 39 different
keywords prescribed by the Google’s Speech Command dataset (Warden, 2018), as well as wake
words like Google, Siri, Bixby, and Alexa — each word is repeated 10 times. The measurements are
performed in a room and serve as Xm,s. The earphone’s microphone samples the audio at 44.1KHz
and we sub-sample to 16 KHz which is standard for state-of-the-art speech algorithms Rybakov
et al. (2020); Baevski et al. (2020). The IMU is sampled at 400 Hz. We have published the dataset
on GitHub anonymously (IMU, 2023b). For 3 users, their raw data achieved poor ASR performance;
we removed this data and utilized the 7 remaining users. To the best of our knowledge, this is the first
speech dataset composed of synchronized audio and IMU vibrations from the ear location.

To synthesize background interference Xm,b, we randomly draw audio samples from Google’s speech
command dataset (Warden, 2018), containing voices of 2, 618 human speakers. Unless specified
otherwise, we synthesize the mixture Xm at 5 dB SIR. The IMU signal needs no synthesis, so we
automatically have Xu. The total dataset ⟨Xm, Xu⟩ is now ready and extends over 1000 hours.

Performance Metrics. (i) Scale-invariant SNR (SI-SNR) is a natural metric to assess speech
enhancement. However, issues appear when evaluating self-supervised approaches with SI-SNR, and
particularly with multi-modal data. Observe that we no longer have access to clean speech Xm,s; with
self-supervised, the reference becomes R = (Xm,s +Xm,n) since the microphone recordings were
performed in everyday environments. Now, since X̂m,s is reconstructing from IMU, it is possible to
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correctly remove Xm,n in many TF-bins. This implies X̂m,s could be closer to Xm,s but further from
R. To mitigate this we report a range of SI-SNR, where the upper bound of the range is computed
by identifying TF-bins that AlterNet has suppressed, and when these bins contain noise below a
small threshold, the noise is added back to X̂m,s. The actual SI-SNR is expected to lie in this range.

(ii) We also report the word recognition accuracy of the denoised signal, using Google’s Key Word
Spotting Classifier (KWS) with 10 and 35 classes, denoted as KWS10 and KWS35, respectively
(Rybakov et al., 2020; Goo, 2022). KWS does not suffer from the SI-SNR issues discussed above.

Models for Comparison.
(1) Unprocessed: The raw audio without denoising
(2) Supervised Denoiser: A recent speech enhancement model (Park and Lee, 2016)

trained on clean speech; 216K parameters.
(3) Supervised AlterNet: Our proposed model trained on clean speech; 60K parameters.
(4) Self-Supervised AlterNet: Our proposed iterative model in Figure 3; 180K parameters.

We publish code in GitHub (IMU, 2023b), and post samples of denoised audio here (IMU, 2023a).

4.1 OVERALL PERFORMANCE

Table 1 reports comparative results across all metrics and models. Unsurprisingly, supervised
AlterNet substantively outperforms all models across all metrics. Self-supervised AlterNet is
comparable to Supervised denoiser with negligible performance loss. This distills the contribution of
AlterNet to speech enhancement as follows: we can either choose to obtain higher performance
gain while requiring the user to provide clean speech data or relieve the user from the data collection
burden at the cost of sacrificing that same performance gain. We also observe that for 4 KHz audio,
Self-supervised AlterNet is as good as (sometimes even better) the Supervised denoiser as it is
easier to upsample the 400Hz IMU signal to 4 KHz rather than 16KHz.

Table 1: Performance comparison across models and metrics. Note that SI-SNR for self-supervised
AlterNet is reported as a range since the ground truth speech is unavailable in such approaches.

Sample rate Models SI-SNR
(dB)

Acc.(%)
KWS10

Acc.(%)
KWS35

16KHz
Supervised Denoiser Gain 6.29± 1.78 21.76± 7.49 18.65± 7.69
Supervised AlterNet Gain 5.57± 1.30 27.46± 7.30 30.45± 6.11
Self-supervised AlterNet Gain [0.49, 4.34] 15.20± 7.24 14.09± 8.37

4KHz
Supervised Denoiser Gain 3.0± 0.77 16.48± 6.81 15.10± 7.17
Supervised AlterNet Gain 4.6± 2.52 19.78± 6.95 17.86± 7.22
Self-supervised AlterNet Gain [4.0, 6.47] 15.21± 7.78 13.91± 9.40
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Figure 7: Performance across different users for (a) KWS 10, (b) KWS 35 accuracy.

4.2 ABLATION STUDY

Variation across users: Figure 7 plots the SI-SNR and KWS accuracy across 5 random users from
our dataset. Supervised AlterNet consistently benefits from both the IMU and the clean-data
supervision while the Supervised Denoiser and Self-supervised AlterNet are mostly comparable.
We observe that users (e.g., user 3) with a higher pitch experience less gain from the IMU as it fails
to capture the high frequencies; the Supervised Denoiser avails an advantage for these scenarios.

Varying mix of clean and interfered data: In the average case of earphone applications, users
will speak in a combination of silent and noisy environments. Thus, evaluating the Self-supervised
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AlterNet’s performance in a mixed scenario is crucial as it has no access to a clean signal. Figure
8 shows that the gain of Self-supervised AlterNet over Supervised Denoiser is not affected by the
fraction of clean signals in both the train and test dataset.
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Figure 8: AlterNet offers gain with an in-
creasing percentage of clean data in train set.
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Figure 9: Performance versus KWS35
regimes.

Varying interference: Figure 9 plots SI-SNR against varying SIR (Signal to Interference Ratio) of
the training/testing data. The contribution of IMU grows as the SIR drops since the additional IMU
modality becomes more valuable under more noisy environments. This explains why Self-supervised
AlterNet outperforms supervised Denoiser at low SIRs but worsens at higher SIRs where the
penalty of self-supervision offsets the gain from IMU’s guidance.

5 RELATED WORK

Audio and Motion modalities for Speech Enhancement: The most closely related work is
SEANet Tagliasacchi et al. (2020) that uses both audio and IMU through a wave-to-wave fully
convolutional generator and discriminator architecture. SEANet assumes the availability of clean
speech, placing the onus of clean data on the user. Another recent work Wang et al. (2021) uses
"alias unfolding" to reconstruct user speech from low resolution IMU motion signals. This work uses
only the IMU signal to reconstruct/classify a given set of keywords, using knowledge of phonemes.
Although the speech enhancement task is different, our Translator inherently performs "anti-
aliasing" to up-sample the IMU signal to speech, and does not need clean phoneme data to train the
network.

Multi-modality learning: Multi-modal deep learning is becoming popular for various speech-
related applications. A particularly growing trend is in audio-visual speech enhancement and source
separation Hou et al. (2018); Gabbay et al. (2017; 2018); Ephrat et al. (2018); Afouras et al. (2018); Lu
et al. (2019) where the audio and visual modalities are acquired together. However, these approaches
have thus far relied on clean training data. We believe AlterNet–style approaches can be built atop
the existing creative ideas.

Self-supervision: Several works Chen et al. (2021); Cheng et al. (2021) have incorporated self-
supervision for audio processing tasks . Authors in Wang et al. (2020) learn a latent representation
of a limited set of clean speech and use noisy speech to share a latent representation with the clean
examples (reducing the burden of clean data). This bears similarity to our paper, but AlterNet
relaxes the assumption on the initial clean set (via the guidance from the second IMU modality).
Another work, MixIT Wisdom et al. (2021), presents great gains in both speech separation and
enhancement. Self-Supervised gain of AlterNetat 0 dB SINR setting is comparable to MixIT gain
for source separation ( 10 dB on anechoic setting and 4 dB in reverberant setting). However, MixIT
assumes both the target audio and interference audio to be speech (same distribution), as a result, it
fits more in the indoor conversation scenario. Moreover, MixIT takes the full noisy sentence as the
input, which might not be possible for keyword spotting scenarios like audio assistant.

6 CONCLUSION

Learning from diverse sources of unlabelled everyday data remains a desirable property of deep learn-
ing. This paper shows possibilities in the specific context of speech enhancement with multi-modal
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data (microphone and IMU). The core idea allows each modality to build upon the other, cooperatively
extracting the latent patterns from the noisy, unlabelled data. There still remains a performance gap
from purely supervised techniques, however, the core ideas of iterative learning between modalities
offers promise. We intend to continue expanding on this idea of alternating learning, and explore
their generalization to other modalities and applications beyond speech enhancement.
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