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Abstract

We consider the problem of speech enhancement in earphones. While microphones
are classical speech sensors, motion sensors embedded in modern earphones also
pick up faint components of the user’s speech. While this faint motion data
has generally been ignored, we show that they can serve as a pathway for self-
supervised speech enhancement. Our proposed model is an iterative framework
in which the motion data offers a hint to the microphone (in the form of an
estimated posterior); the microphone SNR improves from the hint, which then
helps the motion data to refine it’s next hint. Results show that this alternating
self-supervision converges even in the presence of strong ambient noise, and
the performance is comparable to supervised Denoisers. When small amount of
training data is available, our model outperforms the same Denoisers.

1 Introduction

A rich body of work has investigated the general speech denoising problem, however, a modest
amount of clean data is still needed to train personalized Denoisers [Schwartz, |2022]]. Eliminating the
need for clean data can relieve users from separately training their earphones. This paper identifies
an opportunity for self-supervised speech enhancement through multi-modal sensing, obviating the
need to collect noise-free speech data. Today’s earphones include inertial measurement units (IMUs)
that sense motion with a sampling rate of ~ 400 Hz. IMUs help with detecting when the user has
worn the earphone (so audio can be automatically played or paused). Interestingly, when users speak,
IMUs can also pick up faint vibrations from the speech signals [Jabral 2022]. These distorted and
low bandwidth IMU signals are un-interfered by background noise Blue et al.|[2013]] (see Figure[T).

This paper asks: can the faint but noise-free IMU signal facilitate a self-supervised approach to
speech denoising? In fact, for any signal denoising task, is information from a second sensing
modality as effective as having clean training data with a single modality?

We propose AlterNet , a two-stage architecture that develops a cooperation between the IMU and
the microphone, so each modality can teach and learn from the other. The two stages correspond
to a Translator and a Denoiser that operate on the Short Time Fourier Transform (STFT) of the
microphone and IMU data. Briefly, the Translator up-samples the distorted IMU signal to higher-
resolution audio, crudely localizing the user’s speech in the STFT domain. This localization is
extremely crude since the Translator has no clean speech that it can optimize towards; it must use
the noisy microphone signal as it’s reference. Nonetheless, this crudely localized speech now serves
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Figure 1: (a) Microphone recording without interference, (b) Microphone recording with interference,
(c) IMU recording from earphone. (d) Zoomed in view of IMU signal between [0, 200] Hz.

as a reference to the Denoiser, allowing it to slightly improve the speech SNR in the microphone’s
recording. This slightly enhanced speech then serves as a new reference to the Translator, which
localizes the speech slightly better. The iteration converges to an SNR-enhanced speech signal at the
output of the Denoiser. Importantly, the alternating iteration is free from clean training data — the
corrupt data in the two modalities help each other out of their corruption. This alternating network
inherits the expectation maximization (EM) framework (detailed in the Appendix).

Our surprise in the paper arises from how the very faint and distorted IMU data, which learns a very
crude fingerprint (or posterior), can still guide the AlterNet architecture to convergence. While
this is an empirical example of success, we believe the core idea could lead to more general ideas of
multi-modal self-supervision. Our future work is focused on understanding this generalization.

Summary of Results: With help from 7 volunteers, we gathered IMU and microphone data from
earphones and injected interference from a public audio dataset (speech and noise) into the microphone
data stream. The self-supervised AlterNet model is trained on this unclean dataset (at varying
SINR levels). We evaluate the final denoised signal using two metrics: word error rate (WER) from an
automatic speech recognizer (ASR) and scale-invariant signal-to-noise ratio (SI-SNR). Results show
that in terms of WER, self-supervised AlterNet is comparable with the supervised audio Denoiser
(trained with clean voice data), achieving less than 5% difference. When we allow AlterNet to
also train on clean signals, supervised AlterNet exceeds self-supervised AlterNet by 16%.
In closing, we find that IMU extends one of two advantages — we can either choose to improve
denoising performance or relieve the user from collecting clean voice data.

2 Network Architecture

Translator design: Figure [2| shows the proposed network architecture, with the Translator on top
and the Denoiser below it. The Translator’s input is the IMU vibration signal X,, at 400 H z; the
output is the clean mask estimation M. Since M needs to be at 16 kH z, the Translator’s task can be
viewed as super-resolution. We design the network as a guided autoencoder [Lai et al., 2017].
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Figure 2: Proposed AlterNet architecture composed of a Translator on top and Denoiser at the
bottom, using each other’s output as the reference for minimizing the loss function.



Denoiser design: The Denoiser’s input is both the noisy audio (X,,,) and the IMU signal (X,), and
the output is the denoised signal )A(m,s. The lack of clean data X, ; precludes an end-to-end network
that maps (X, X,,) to )A(m,s. However, we know that a consistent mapping exists between audio
and IMU, i.e., X, = fimu(Xm,s), dictated by the bone channel that conducts the throat’s vibration.
To leverage this, we design an auto-encoder (AE) using only the microphone recording X,,, as input,
and forcing part of the latent space to match the IMU signal X,,.
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Figure 3: Denoiser architecture: The audio is encoded into a latent space, one part of which mimics
the IMU and the other parts are representations of high-frequency speech signals and interference.

We design the AE’s latent space as L = {L,, L,,} (see Fig. [3) and force L, to match the IMU
data X, (loss terms reported in the next section). The remaining L,, = L\ L, is allocated
to represent the “gap” between audio and IMU. This gap arises because the IMU only picks-up
(aliased) lower-frequencies of the user’s voice and is unable to sense the higher-frequency voice

harmonics, and neither the interference signal. Hence, we model L,,, = {Lghi), Lga”)}, where Lghi)

is a representation of the target’s high frequency components, and Ll()a”)

representation of all the background interference.

is a highly compressed

2.1 Training

The Translator begins by training against the noisy audio X,,,. After NV; = 25 epochs, we freeze
the Translator and use its output (i.e., the masked audio X,,, ® M) to train the Denoiser for the
next Ny = 75 epochs. We denote (N; + Ng) epochs as one training cycle. We then start the next

cycle by freezing the Denoiser and using the denoised signal X m,s from the previous cycle to train
the Translator. The iteration is performed for C' = 3 cycles.

Translator’s loss function: Aggressive up-sampling is prone to overfitting, so the Translator

incorporates a loss function at each stage of the guided auto-encoder. The final loss is a convex

combination of Mean Absolute Error (MAE): Liyans = Eprop(a) i wllDoae U)J “T@illt where 7 is
i=1 ?

the number of scale-up stages; w; is the weight for stage i; D_1(xz); is the Denoiser’s output from
previous cycle, down-sampled to match stage ¢; and T'(z); is the Translator’s output after stage i.

The Denoiser’s loss function is composed of three terms: Lyenoiser = Lm + A1 *x L +
Ao * Lo where L denotes the audio reconstruction loss; Lj, is the IMU loss from the la-
tent space; Lo is the correlation loss, and A is the weighing scalar. The loss functions
are defined as: Ly = Epop)||T(7) — D(2)|1.LL = Epup@)llLlu — Xull1, andLe =

Eaptor | S| oo (XalD) LV D) | = S| eore (Xal0), L)) |

The Correlation loss L¢ aims to capture the uncorrelated relationship between the IMU signal X,

and the interference embedding Ll()a”), as well as the correlation between the IMU X, and the high

frequency components of the speech, Lghi). In the equation, ¢, j, k are the indices of the dimensions
of X, Ll()a”), and L™ respectively.

3 Experiments and Results

Dataset Construction. We recruit 7 volunteers and ask them to wear normal earphones and a separate
IMU [Fem, 2022]] near their ears. The IMU is sampled at 400 H z. Each volunteer speaks 39 different
keywords 10 times prescribed by the Google’s Speech Command dataset [Warden, 2018]], as well as
wake words like Alexa and Siri. To synthesize background interference X, ;, we randomly draw
audio samples from Google’s speech command dataset [Warden, |2018]]. Unless specified otherwise,
we synthesize the mixture X, at 5 dB SIR. The IMU signal needs no synthesis, so we automatically
have X,. The total dataset (X,,,, X,,) is now ready and extends over 1000 hours.



In addition to Scale-Invariant SNR (SI-SNR), we also report the word recognition accuracy (WER)
of the denoised signal as the metrics, using Google’s Key Word Spotting Classifier (KWS) with 10
and 35 classes, denoted as KWS10 and KWS35, respectively [Rybakov et al.,|2020, |Gool 2022].

Models for Comparison.
(1) Supervised Denoiser:
(2) Supervised AlterNet :
(3) Self-Supervised AlterNet :

We publish code in GitHub [IMU| [2023b]], and post samples of denoised audio here [IMU| [2023a].

[Park and Lee} 2016] trained on clean speech; 216K parameters.
Our proposed model trained on clean speech; 60K parameters.
Our proposed iterative model in Figure [2f 180K parameters.

3.1 Overall performance

Table[T]reports comparative gains against the raw noisy audio across all metrics and models. Unsurpris-
ingly, supervised AlterNet substantively outperforms all models. Self-supervised AlterNet is
comparable to Supervised denoiser with negligible performance loss. This distills the contribution of
AlterNet to speech enhancement as follows: we can either choose to obtain higher performance
gain while requiring the user to provide clean speech data or relieve the user from the data collection
burden at the cost of sacrificing that same performance gain.

Table 1: Performance comparison across models and metrics.

SI-SNR Acc.(%) Acc.(%)
Models (dB) KWS10 KWS35
Supervised Denoiser Gain 6.29£1.78 | 21.76 £ 7.49 | 18.65 £ 7.69
Supervised AlterNet Gain 5.57+1.30 | 27.46 £7.30 | 30.45£6.11
Self-supervised AlterNet Gain | 4.34 +£3.02 | 15.20 = 7.24 | 14.09 + 8.37

3.2 Ablation Study
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Figure 4: AlterNet ’s performance on
different percentage of clean data.

Figure 5: AlterNet ’s performance un-
der different SIR regimes.

Varying mix of clean and interfered data: In the average case of earphone applications, users
will speak in a combination of silent and noisy environments. Thus, evaluating the Self-supervised
AlterNet ’s performance in a mixed scenario is crucial as it has no access to a clean signal. Figure
M) shows that the gain of Self-supervised AlterNet over Supervised Denoiser is not affected by the
fraction of clean signals in both the train and test dataset.

Varying interference: Figure 5| plots SI-SNR against varying SIR (Signal to Interference Ratio) of
the training/testing data. The contribution of IMU grows as the SIR drops since the additional IMU
modality becomes more valuable under more noisy environments. This explains why Self-supervised
AlterNet outperforms supervised Denoiser at low SIRs but worsens at higher SIRs where the
penalty of self-supervision offsets the gain from IMU’s guidance.

4 Conclusion

This paper shows possibilities in the specific context of speech enhancement with multi-modal data
(microphone and IMU). The core idea allows each modality to build upon the other, cooperatively
extracting the latent patterns from the noisy, unlabelled data. We intend to continue expanding on
this idea of alternating learning, and explore their generalization to other modalities and applications
beyond speech enhancement.
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