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Learning Optimal Kernels for Gaussian Process Regression

Abstract
Black box optimization focuses on optimizing un-
known functions in high-dimensional spaces. In
certain applications, evaluating these functions is
expensive, hence the optimization must be per-
formed under tight sample budgets. Past works
have approached black-box optimization using
Gaussian Process Regression (GPR) and sample
efficiency has been improved by utilizing infor-
mation about the shape/structure of the function.

We propose to discover the structure of the func-
tion by learning a GPR kernel. Learning the
kernel is achieved via an auxiliary optimization
in (latent) kernel space, designed inside a varia-
tion autoencoder. The optimal kernel is expected
to best “explain” the unknown function, helping
lower the sample budget. Results show that our
method, Kernel Optimized Blackbox Optimiza-
tion (KOBO), effectively minimizes the black-box
function at a substantively lower sample budget.
Results hold not only in synthetic black box func-
tions but also in real applications, e.g., where a
hearing aid needs to be personalized with limited
user queries.

1. Introduction
Many problems involve the optimization of an unknown
objective function. Examples include personalizing content
x to maximize a user’s satisfaction f(x), or training deep
learning models with hyperparameters x to maximize their
performance f(x). Function f(x) is unknown in these cases
because it is embedded inside the human brain (for person-
alization) or too complex to derive (for hyper-parameter
tuning). However, for any chosen sample xi, the value of
f(xi) can be evaluated. For hearing-aid personalization,
say, evaluating the function would entail playing audio with
some hearing-compensation filter xi and obtaining the user’s
satisfaction score f(xi).

Bayesian methods like Gaussian Process Regression (GPR)
are de facto approaches to black-box optimization. Using a
set of function evaluations, conventional GPR (6) learns a

.
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probabilistic surrogate model f̂(x) for f(x). The optimum
is estimated on this surrogate as x̂∗ = argmin−f̂(x).

In most BBO problems, f(x) is expensive to evaluate, hence
a strict sample or query budget B is of interest. Tech-
niques that lower this budget have garnered recent atten-
tion. One idea is to exploit domain knowledge about the
rough shape of f(x), i.e., select a GPR kernel that mod-
els this shape. With humans, for example, f(x) may
have a staircase structure (Figure 1) as they may not
perceive differences in certain neighborhoods of x, but
their ratings may change just outside that neighborhood.

Figure 1. 2D staircase.

If GPR’s surrogate model f̂(x)
captures this staircase structure
in its kernel, sample efficiency
can improve. The question is,
in the absence of domain knowl-
edge, can the optimal GPR ker-
nel K∗ be learnt, using the
same sample queries needed to
find x∗?

A growing body of research (11)(15)(26) is concentrating on
kernel learning. One effective approach is Automatic Statis-
tician (AS) (5) where authors compose complex-kernels by
combining simple ones, and design a search method over
the countably infinite complex-kernels (more in the related
work section). Subsequent improvements over AS have used
Hellinger distance as a measure of kernel similarity (22).
This similarity measure guides an optimization-based search
over the space of composite kernels. To reduce search com-
plexity, (7) exploits additive structures in the search space
and employs MCMC methods to discover the kernel. How-
ever, all these search techniques are impeded by the kernel
space being discrete, consisting of only categorical compo-
sitions of simple kernels.

Our contribution is a kernel-learning technique that first
creates a continuous space of kernels, then optimizes on
that space to find the optimal kernel K∗ for f̂(x). Briefly, a
Kernel Combiner generates composite kernels by adding or
multiplying simple “basis” kernels like Square Exponential
(SE), Periodic (PE), Matérn (MA), etc. The resulting kernel
space is discrete and inherits the past challenges of search-
ing for the best kernel. Hence, we propose a generative
model – a Kernel Space Variational Autoencoder (KerVAE)
– that learns a low-dimensional continuous manifold of the
discrete kernels. This manifold lives in the latent space
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Learning Optimal Kernels for Gaussian Process Regression

of the VAE but we do not have a function of the kernels
that can be optimized. Of course, given any kernel, we can
evaluate its effectiveness1, implying that finding the optimal
kernel can also be formulated as a blackbox optimization
problem. Thus, kernel learning is achieved through a Kernel
Space GPR (KerGPR) that outputs an optimal kernel K∗,
which is then used to model the surrogate function f̂(x).
Figure 2 illustrates the core idea of KOBO, where we learn
a GPR’s kernel by applying a second GPR on a carefully
designed continuous kernel space.

Figure 2. KerGPR in the latent space of a VAE

Results show using kernel K∗ from KOBO reduces the num-
ber of function evaluations needed to reach the optimal
(in comparison to SOTA methods that use MCMC-based
discrete-kernel sampling (7)). Experiments are reported for
various synthetic functions, and also from real-world exper-
iments with U=6 users. The users were asked to rate the
quality of a limited number of audio clips, and using these
ratings, KOBO prescribed a personalized filter, which is ap-
plied to audio to maximizes that user’s satisfaction. We find
that KOBO was able to deliver greater satisfaction to users
within a budget B = 25 queries, compared to conventional
kernels. We believe there is still room for improvement,
both in terms of performance as well as in the generalization
of KOBO to other applications.

2. Problem Formulation
Consider an unknown real-valued function f : H → R
where H ⊆ RN , N ≥ 500. Let x∗ be the minimizer of
f(x). We want to estimate x∗ using a budget of B queries.
Thus, the optimization problem is,

argmin
x̂∈H

||f(x̂)− f(x∗)||2

s.t. Q ≤ B
(1)

where Q is the number of times the objective function is
evaluated/queried, and the sample budget B ≪ N . Func-
tion f may be non-convex, may not have a closed-form
expression, and its gradient is unavailable. Blackbox opti-
mization suits such problems, and Bayesian methods like
GPR require choosing a kernel to model the function struc-
ture – a poor choice incurs more queries for optimization.

1Using model evidence, described later, that captures how well
the kernel fits the shape of the available data

Since queries can be expensive in many applications (e.g.,
users need to answer many queries, or a NeuralNet needs re-
training for each hyper-parameter configuration), lowering
Q is of growing interest. Kernel learning aims to address
this problem.

3. Background on Bayesian Optimization (BO)
Bayesian optimization (6) broadly consists of two modules:
(1) Gaussian Process Regression (GPR) that learns a Gaus-
sian posterior distribution of the likely values function f
can take at any point of interest x. (2) Acquisition function,
a sampling strategy that prescribes the point at which f
should be evaluated (or observed) next. We briefly discuss
GPR to motivate the kernel learning problem.

3.1. Gaussian Process Regression (GPR)

Prior & Posterior: GPR generates a probabilistic surrogate
model by defining a Gaussian distribution (N (µ,K)) over
infinite candidate functions. At initialization, i.e., before
any function observations, the prior distribution over the
candidate functions is defined by µ = 0 and a covariance
matrix K. This matrix is computed using a kernel function
k as, Kij=k(xi, xj). The kernel essentially favors candidate
functions that are similar to the kernel’s own shape/structure
– these candidates are assigned a higher likelihood. An ex-
pert with domain knowledge about the structure of f(x)
can choose the kernel judiciously, resulting in better surro-
gate functions f̂(x). Better f̂(x) will ultimately reduce the
number of queries needed to optimize the objective f(x).

After initialization, when the function f has been observed
for a set of samples X = {x1, x2, . . . , xK}, i.e., we know
F = {f(x1), f(x2), . . . , f(xK)}, the prior is updated to
form the posterior distribution over the candidate functions.
The posterior mean µ is the most likely surrogate of the
function f . Eqn. 2 shows the posterior generated by GPR.

P (F|X ) ∼ N (F|µ,K) (2)

where, µ = {µ(x1), µ(x2), . . . , µ(xK)}, Kij=k(xi, xj),
and k represents a kernel function.

Predictions: To make predictions F̂ = f(X̂ ) at a set of
new points X̂ , GPR uses the current posterior P (F|X ) to
define the the conditional distribution and hence prediction
of F̂ is as shown in Eqn. 3. The proof and explanations of
all the above are clearly presented in (28)).

P (F̂ |F ,X , X̂ ) ∼ N (K̂TK−1F ,
ˆ̂
K− K̂TK−1K̂) (3)

3.2. Kernel Selection

The kernel selection problem is to determine the optimal
kernel K∗ that best describes the structure of the unknown
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Learning Optimal Kernels for Gaussian Process Regression

function for the observations (X ,F). As mentioned ear-
lier, careful kernel selection can be crucial, especially with
limited sample budgets B.

Let us consider K to be the class of all kernels that describes
the observations. K can be thought of as the family of Gaus-
sian Processes (GPs) with different kernel choices. Each
kernel in K represents different structural characteristics of
the function based on the observations. For example, Figure
3 illustrates GPs with different kernels. The hyperparam-
eters γK of a kernel K distinguish the kernels within the
same GP family.

0 0

0

0

Squared-exp
(SE)

Periodic
(PER)

Linear (LIN)
Rational-
quad. (RQ)

local
variation

repeating
structure

linear
functions

multi-scale
variation

Figure 3. Row 1 shows simple (or basis) kernels (5). Row 2 shows
corresponding surrogates drawn from a GP with the above kernel.

The goal of kernel selection is to select one kernel K∗ ∈ K
that explains the function observations (X ,F) best. Let’s
denote L : K → R to be a model evidence that measures
how well a kernel K fits the observations. We assume that
evaluating L(K) for all kernels in K is too expensive. The
kernel selection problem is then,

K∗
γ = argmax

K∈K
L(K) (4)

This problem is too difficult to be optimized with Bayesian
optimization as the kernel space K is discrete. The key idea
is to transform the problem in Eqn. 4 into a problem in
continuous space upon which BO can be applied.

In our work, the “model evidence” L is chosen to be GPR
posterior in Eqn. 2 as it generates the surrogate that best
describes the observations informed by the chosen kernel.

L(K) = P (F|X ,K) (5)

4. Kernel Learning in KOBO
We aim to create a continuous space of kernels and find the
optimal kernel K∗. To this end, kernel learning in KOBO is
composed of the following 3 modules:

(1) Kernel Combiner creates composite kernels K ∈ K
that form the discrete kernel space K.

(2) Kernel space Variational Autoencoder (KerVAE) de-
fines the transformation from discrete kernel space K

to low-dimensional continuous space Z . KerVAE is
pre-trained on the kernels generated by Kernel Com-
biner to obtain the corresponding continuous latent
space Z .

(3) Kernel space GPR (KerGPR): Since the kernel space
objective L(K) is also a black-box, a GPR is used to
optimize the posterior (from Eqn. 5) on Z; this gives
z∗ and the corresponding optimal kernel K∗.

Figure 4 connects all the modules to give a complete
overview of KOBO. The main objective function from Eqn.
1 is optimized with a GPR that we call Function GPR
(fGPR). The kernel for fGPR is supplied by the Ker-
nel space GPR (KerGPR) running inside KerVAE. User
satisfaction scores are received in batches – they are used
to optimize the kernel in KerGPR and to decide the next
queries for fGPR. The process iterates until the sample
budget B is exhausted.

Figure 4. System flow: KOBO iterates across a function GPR
(fGPR) on top and a kernel GPR (KerGPR) below that runs in
the latent space of KerVAE. The blue arrow denotes the model
evidence input to KerGPR, and the red arrow denotes the optimal
kernel K∗ supplied by KerGPR to fGPR.

4.1. Kernel Combiner

Complex kernels can be expressed as operations on the
context-free grammar of base kernels (13). Given a set of
base kernels B = {A,B,C,D,E}, and a set of operators
O = {add,multiply, end, ...}, the Kernel Combiner gener-
ates a composite kernel kC by drawing kernels from B and
operators from O with probabilities pB, pO. An example
kC = A ∗ C +B ∗D.

To form a kernel space K, the Kernel Combiner develops a
unique representation for each kC . This representation con-
sists of two parts: (1) Grammar-based representation, and
(2) Data-based representation. The Grammar-based repre-
sentation aims to map each kernel to a point in kernel space
K. As discussed next, it tries to preserve the semantic con-
struction of complex kernels kC from simple base kernels
B. The Data-based representation encodes the “distances”
between different kC to base kernels B, depending on the
function samples. This representation provides adequate
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information to KerVAE to learn the continuous latent space
Z .

Grammar-based representation: Given a composite ker-
nel kC , its grammar-based representation is a vector rc,
designed as follows. Let A,B,C,D,E be five base ker-
nels in B. These are simple kernels like Square-exponential,
Periodic, Rational Quadratic, etc. Any composite kernel
kC created from the base kernels is expressed in the form
of Eqn. 6. The code rc is then the vector of indices, i.e.,
rc = [a1, b1, c1, d1, e1, a2, b2, c2, d2, e2, a3, b3, c3, d3, e3].

kC = Aa1 ∗Bb1 ∗Cc1 ∗Dd1 ∗Ee1

+Aa2 ∗Bb2 ∗Cc2 ∗Dd2 ∗Ee2

+Aa3 ∗Bb3 ∗Cc3 ∗Dd3 ∗Ee3 . . .

(6)

If a composite kernel is, say, k′
C = A2 ∗E+C ∗D, then

the corresponding Grammar-based representation would be
r′c = [2, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0]. Note, the ele-
ments of the code vectors can also be fractions.

This encoding scheme has two advantages. Firstly, each
code rc preserves its composition, i.e., given the code vector
rc, the base kernels and the operators used to construct
kC can be interpreted. Secondly, unlike one-hot encoding
schemes (8)(19), the code space is continuous. For instance,
a code r′′c = [2, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0] – which
is only a flip of the second element in r′c – results in k′′

C =
A2 ∗B ∗E+C ∗D. In general, a small change in the code
produces a small modification to the kernel composition.

Data-based representation: We also want to represent the
combined kernel kC based on the available function obser-
vations (X ,F). For each kC , we compute the “distances”
between its covariance matrix MC and the covariance matrix
of each base kernel, Mb∈B. The “distance” metric quantifies
the similarity in terms of their closeness in kernel space K.
We use the Forbenius norm to compute the matrix distances.
This representation is denoted as rd ∈ R|B|.

rd = ||MC −Mb∈B||F (7)

The final representation of a composite kernel kC is r =
[rc, rd]. This is used to train the KerVAE to generate the
continuous low-dimensional kernel space Z .

4.2. Kernel space Variational Autoencoder (KerVAE)

Composite kernels kC form a discrete kernel space K. Brute
force search on this space is expensive. Besides, the discrete
nature of the space also prohibits optimization techniques –
even Bayesian Optimization – to find the optimal K∗.

We turn to a generative model, Kernel space Variational Au-
toencoder (KerVAE) to learn a continuous low-dimensional
latent space Z of the kernel space K. A Kernel space GPR
(KerGPR) in Z can then be used to find the optimal K∗.

KerVAE has two main components: (1) a probabilistic en-
coder that models qϕ(z|x) ∼ pθ(x|z)p(z) parameterized by
ϕ where p(z) is the prior over the latent space, and (2) a
decoder that models the likelihood pθ(x|z) parameterized
by θ. The parameters of qϕ(z|x), pθ(x|z) are optimized by
joint maximization of the ELBO loss (16),

L(ϕ, θ, x) = Eqϕ(z|x)[logpθ(x, z)− logqϕ(z|x)] (8)

Encoder: KerVAE’s encoder learns a Gaussian distribution
whose mean and deviation are the outputs of a Multilayer
Perceptron (MLP). We define,

qϕ(z|x) = N (z|µenc, σ
2
encI)

[µenc, σenc] = MLP(x|ϕ)
(9)

Our MLP is a feed-forward network with three hidden layers
and a ReLU activation function parameterized by weights
ϕ. µenc, σ

2
enc denote the mean and variance of the encoder

Gaussian distribution.

Decoder: The output of the KerVAE’s decoder is l =
MLP(z|θ) with the same MLP design as the encoder. θ
denotes the corresponding weights that need to be opti-
mized jointly with ϕ during training. The KerVAE Decoder
models a Gaussian likelihood pθ(x|z) as follows,

pθ(x|z) ∼ N (x|µdec, σ
2
decI) (10)

where [µdec, σdec] = l is the MLP’s output, and denotes the
mean and variance of the decoder’s Gaussian distribution.

The KerVAE can be pre-trained independent of the Function
GPR (fGPR) and the kernel space GPR (KerGPR). This
is because the grammar-based representation rc does not
depend on any function evaluation data D = (X ,F), and
computing the data-representation rd only uses an initial set
of evaluations D0 = (X0,F0).

Once KerVAE is pre-trained, kerGPR is used to determine
the optimal kernel z∗ ∈ Z and the corresponding K∗ ∈ K.

4.3. Kernel space GPR (KerGPR)

KerVAE’s latent space Z is a (low-dimensional) space of
candidate kernels. Optimizing on this kernel space is also a
blackbox optimization problem (similar to Eqn. 1) because
the objective function is again unknown2. We use GPR to
find z∗ in the latent space and hypothesize that it decodes
to the optimal kernel K∗. Therefore, it is possible to search
for the best model in continuous space Z rather than in the
original (discrete) space K. Thus our optimization objective
is:

K∗ = Dec(argmax
z∈Z

P (F|X ,Dec(z))) (11)

2Observe that for a given z, the objective function can be
evaluated by decoding z to a kernel k, and computing the model
evidence for this kernel from Eqn. 5.
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Figure 5. Comparison of KOBO and conventional BO using SE, PER, RQ, and Matérn kernels for (a) Staircase functions, (b) Smooth
Branin, and, (c) Periodic Michalewicz

where, Dec(.) denotes the mapping of a point from Z space
to that in K space through the KerVAE decoder. The optimal
kernel K∗ is then used by Function GPR (fGPR) — in the
GPR posterior in Eqn. 2 — to generate surrogates that
closely model the unknown function structure (Eqn. 1).

5. KOBO: Kernel Optimized BO
Figure 4 shows the complete Kernel Optimized Blackbox
Optimization (KOBO) model, with two main modules:

(1) Function GPR (fGPR): This is a Bayesian frame-
work aimed at optimizing the objective function f(x)
through a GPR that uses an initial kernel to generate
surrogate functions, and then uses an acquisition func-
tion to decide the next sample xi to evaluate. This
module forwards the model evidence, p(F|X ,K) to
the second module and receives updated kernel pre-
scriptions from it.

(2) Kernel Learning: This second module learns the con-
tinuous kernel space through a kerVAE and applies a
GPR on the latent space to estimate z∗. The GPR uses
model evidence for the optimization, and returns the
optimal kernel K∗ to fGPR. The iterations occur until
the sample budget B has been expended.

Algorithm 1 presents the interaction between the modules.

6. Evaluation and Results
6.1. Gain from composite kernels over simple kernels

Metric: To quantify the effectiveness of kernels, we use
the metric of Regret, defined as the difference between
the predicted and true minimum, (f(x̂∗) − f(x∗)). We
compare KOBO’s regret against 5 popular base kernels
B = {SE,PER,RQ,MAT,LIN} which respectively de-
note Square-Exponential (SE), Periodic (PER), Rational
Quadratic (RQ), Matérn (MAT), and Linear (LIN) kernels.
The SE base kernel is used as the initialization for all KOBO
experiments. All reported results are an average of 10 runs.

Synthetic functions: We report results from experiments
conducted on 3 types of synthetic functions f(x), all as-
sumed to be black-boxes:

Algorithm 1 Kernel Optimized Bayesian Optimization
1: Create a prior Gaussian with a base kernel in B in fGPR
2: Obtain observations D0 = (f(X0),X0) at initial n0

points: X0 chosen at random
3: Generate kC ∈ K and compute rd against D0

4: Pre-train KerVAE using r to obtain continuous space Z
5: Update the fGPR posterior in 2 with observations D0

6: Use the fGPR posterior in KerGPR to obtain K∗

7: Modify the fGPR posterior with the optimal kernel K∗

8: while n ≤ B do
9: Let x′ be the next fGPR sample. Observe f(x′)

10: Update fGPR with observations (f(Xn),Xn = x′)
11: Using the updated posterior kerGPR learns new K∗

12: Modify the fGPR posterior with new K∗

13: Dn = {Dn−1 ∪ (f(Xn),Xn = x′)}, n = n+ 1
14: end while

(1) Staircase functions shaped similar to that of Figure
1 but in N = 2000 dimensions; they exhibit non-smooth
structures (2).
(2) Smooth benchmark functions such as BRANIN com-
monly used in Bayesian optimization research (25).
(3) Periodic functions such as MICHALEWICZ that ex-
hibit repetitions in their shape (25). More details on func-
tions and evaluation parameters in the Appendix.

Results: Figures 5(a),(b),(c) report Regret for
the Staircase, Smooth (BRANIN), and the
MICHALEWICZ objective functions, respectively. For
each objective, KOBO is compared to base kernels in
B = {SE,PER,RQ,MAT,LIN}. Kernel learning gains
are understandably small when the objective function is
smooth (Figure 5(b)). However, when the objective function
exhibits complexity like Staircase or MICHALEWICZ
in Figure 5(a), (c), KOBO minimizes regret in much
fewer function evaluations. When function evaluation is
expensive, this is a desirable advantage.

6.2. KOBO versus SOTA’s composite kernels

Another Metric: We will again use Regret but since
we are learning the kernel in the latent space of Ker-
VAE, we use a second metric Model Evidence, which
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is the normalized probability of generating the observed
data D given a kernel model K, i.e., log(P (f |X ,K))/|D|
(22). Computing the exact model evidence is generally
intractable in GPs (24)(21). We use the Bayesian Informa-
tion Criterion (BIC) to approximate the model evidence as
log(P (f |X ,K)) = − 1

2 f
TK−1f− 1

2 log((2π)N |K|), where
N is the dimensions of the input space H ⊆ RN .

We will plot Regret against the number of “Function Eval-
uations” (on the X axis), but for Model Evidence, we
will plot it against the number of “Latent Evaluations”. Re-
call that Model Evidence is the metric used in the la-
tent space of KerVAE to find the “best” kernel K∗. Hence
“Latent Evaluations” denotes the number of latent space
samples z and their corresponding kernels Dec(z) = K
sampled by KerGPR to find K∗. This reflects the computa-
tion overhead of adding the KOBO kernel learning module
to conventional GPR.

Baseline: The MCMC algorithm (7)(1) is used as the com-
parison baseline. The number of possible composite kernel
models kC is very large. This makes computing the model
evidence for each kernel prohibitively expensive. How-
ever, computing a small (i.e., not super-exponential) number
of model evidence is tractable. Thus, the model evidence
is sampled using any MCMC method like Reverse Jump
MCMC (RJMCMC) (12) or Metropolis-Hastings (7).

To apply Metropolis-Hastings, the proposal distribution
g(k′|k) is defined as follows; given a current kernel model
k, we can either add or multiply a chosen base kernel from
B. We construct the proposal distribution by first choosing
whether to add or multiply, each with 50% probability, and
next, picking a base kernel from B uniformly at random.

Given the current kernel kj (initializing k0 to the final ker-
nel model found in the previous iteration), we sample a
proposed model k′ from the proposal distribution g(k′|kj).
Next, we compute the model evidence for k′ and use this to
compute the Metropolis-Hastings acceptance probability:

A(k′|kj) = min
(
1,

P (F|D,K′)g(kj |k′)

P (F|D,Kj)g(k′|kj)

)
(12)

Finally, we update the current state of MCMC to k′ with
probability A(k′|kj).

Results: Figure 6(a) shows that KOBO outperforms MCMC
baseline for the staircase objective function in Figure 1.
KOBO attains the global minimum in about 17 function
evaluations in contrast to MCMC, which incurs 28. Figure
6(b) illustrates that KOBO’s KerGPR achieves significantly
higher “Model Evidence” in the latent space Z over the
MCMC baseline in 20 iterations, i.e., KOBO’s “best” kernel
K∗ seems to better explain the observed data.

Figure 6. Comparison of KOBO and MCMC: (a) Regret (b)
Model Evidence.

6.3. Is K∗ indeed learning the structure of f(x)?

If we know the objective function f(x), we can verify
whether K∗ has learnt its structure. To test this, we sample
a function from a GP with a known kernel K+ and pretend
that to be f(x); we check if K∗ converges to K+.

Results from N -dimensional synthetic functions: Table
1 demonstrates KOBO’s ability to learn complex kernels.
The top row shows the N -dimensional objective functions
sampled from a GP using different known kernels. The
subsequent rows show KerVAE’s learnt kernel after Q ob-
servations/queries. With more Q, KerGPR approaches the
optimal (known) kernel.

Q f1(x) ∼ A ∗A ∗B + C f2(x) ∼ C +D f3(x) ∼ D ∗B +D f4(x) ∼ D ∗B ∗A
5 A ∗B A A B
10 A ∗B + C A+D A ∗B ∗D +D B
15 A ∗A ∗B +D A ∗ C +D A ∗B +D B ∗D
20 A ∗B + C ∗D A ∗ C +D B ∗D +D B ∗D ∗ C
25 A ∗A ∗B + C ∗D A ∗ C +D B ∗D +D B ∗D ∗ C

Table 1. High-Dimensional Function modeling with KOBO,
{A,B,C,D,E} = {SE, PER,RQ,MAT,LIN}

Learning real-world CO2 emission data: Figures 7(a,b,c)
plot f(x) as the true CO2 emissions (27) and its corre-
sponding mean fGPR model for increasing function ob-
servations. In Figure 7(a), we utilize the first 20% of
the available data as observations; KOBO learns K∗ =
SE ∗ PER + RQ. The periodic structure of the function,
as evident in the first 20% data, is captured by the KerGPR.
When the first 40% of the data is observed, KerGPR cap-
tures the downward linear trend of the function resulting
in K∗ = SE ∗ PER + PER + LIN. With 60% of the data,
K∗ = SE ∗ PER ∗ RQ + PER ∗ LIN + LIN models the in-
terplay between the function’s periodic structure and linear
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Figure 7. Function structure modeling with KOBO: Atmospheric CO2 emissions (27) is the objective function. The fGPR posterior mean
function model using (a) 20% (b) 40% (c) 60% of the data is displayed. All data to the left of the black dotted line are used as observations.
The blue dotted line denotes the true function. The red line denotes the fGPR mean and the grey line denotes GPR with Periodic kernel.

Hearing Loss

Q U1 U2 U3 U4 U5 U6
SE KOBO PER SE KOBO PER SE KOBO PER SE KOBO PER SE KOBO PER SE KOBO PER

5 6 6 6 8 8 8 6 6 6 6 6 6 7 7 7 5 5 5
10 6 8 6 8 8 8 6 7 7 7 6 6 7 9 8 7 9 6
15 6 10 7 8 10 8 7 9 7 8 8 7 7 9 8 7 10 6
20 10 10 10 9 10 9 7 10 10 10 10 9 10 10 9 10 10 9
25 10 10 10 10 10 10 9 10 10 10 10 10 10 10 9 10 10 9

Random Audio Corruption

Q U1 U2 U3 U4 U5 U6
SE KOBO PER SE KOBO PER SE KOBO PER SE KOBO PER SE KOBO PER SE KOBO PER

5 1 1 1 3 3 3 1 1 1 3 3 3 0 0 0 0 0 0
10 2 3 1 4 4 4 2 2 3 5 8 6 3 3 2 7 6 5
15 2 4 5 4 10 4 2 2 3 5 8 7 3 3 2 7 6 5
20 4 10 5 4 10 9 5 8 4 7 9 8 4 10 3 8 10 5
25 8 10 9 8 10 9 10 8 7 7 10 9 4 10 7 10 10 7

Table 2. Audio personalization results with 6 volunteers.

trends. In contrast, a conventional Periodic (PER) kernel
(shown in Figure 7(c)) is only able to capture the periodic
structure, not the linear trend, even with 60% of the data.

6.4. User experiments: audio personalization

This section reports experiments with real volunteers with
the goal of audio personalization. We deliberately corrupt
audio played to the user with the aim of helping the user
pick a filter h∗ that cancels the effect of the corruption –
called equalization – and recovers the original audio; hence
maximizing the user’s audio satisfaction. Therefore, a GPR
employed in the space of all audio filters H, optimizes
the user satisfaction f(h) for h∗. At each iteration, the
corrupted audio is filtered with h′ (as recommended by
GPR) and played to the user. The user’s score (0 to 10) of the
perceived audio quality serves as the function observations
f(h′). User feedback is finite and the frequency selective
nature of human hearing (3) makes optimizing f(h) well
suited for kernel learning BO methods like KOBO.

We invited 6 volunteers to rate the audio clips filtered with h,
prescribed by fGPR. These observations are also employed
by KerGPR to learn the optimal kernel K∗. We evaluate
how much Regret can be minimized by KOBO (and under
what sample budget B) compared to conventional GPR
optimizers that use fixed simple base kernels {SE,PER}.

Results: Table 2 displays the final satisfaction scores from

the 6 volunteers (U1-6). Audio was corrupted first by a
“hearing loss” audiogram (4), then by a “Random” filter
(more details in Appendix). KOBO can improve user sat-
isfaction in Q = 15 queries over the Baselines, and
achieves the maximum with Q = 25 queries. With fewer
Q ≤ 10, KOBO cannot yet outperform the Baselines as
the function f ’s search space, R4000, had not been suffi-
ciently sampled for learning the optimal kernel. The audio
demos at various stages of the optimization is made public3.
We also report early results from an image personalization
application that benefits from KOBO (see Appendix A.2.4).

7. Ablation Studies
Proposed kernel encoding vs. One-hot representation:
Past work have proposed one-hot encoding (8)(19) to encode
discrete items, while we design the grammar-based encod-
ing. Table 3 shows both representations for two semantically
similar kernels. The One-hot encoding assigns codes to each
base kernel and each operator (e.g., A = 00001, ∗ = 010,
etc.) and concatenates them; consequently the two one-hot
codes are quite different even for similar kernels. KOBO’s
grammar representation preserves the “continuity” in code
space. Figure 8(a) and (b) visualize this notion of continuity
in the code space, i.e., the latent space learnt by KerVAE
with rd = 0.

3https://keroptbo.github.io/
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Table 3. Comparing grammar vs. one-hot encoding
kC1

= A2 ∗B+D
Grammar-based [2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

One-hot [00001, 010, 00001, 010, 00010, 001, 01000, 000, 00000]

kC2
= A2 ∗B+C ∗D

Grammar-based [2, 1, 0, 0, 0, 0, 0,1, 1, 0, 0, 0, 0, 0, 0]
One-hot [00001, 010, 00001, 010, 00010, 001, 00100, 010, 01000]

Figure 8. Top-2 SVD dimensions of the code space for (a)
Grammar-based encoding & (b) One-hot encoding.

With and without data-based representation: Data-
based representation rd encodes the similarity between the
grammar-based code rc and the objective function’s struc-
ture. Consider again the grammar-based codes in Table 3
– they are similar in code space but since they model dif-
ferent kernels, they should be mutually further away in the
latent kernel space. Figure 9 visualizes this; the latent space
that also includes the data context will be tailored to the
objective function, ensuring efficiency in KerGPR.

Figure 9. Top-2 SVD dimensions of the KerVAE trained on (a) only
grammar-based code rc & (b) both grammar and data, [rc, rd].

8. Related Work
A body of work in Bayesian optimization explores kernel
learning for improving performance. Authors of (26) treat
the kernel as a random variable and learn its belief from the
data. The probabilistic kernel is represented as an additional
variational variable in a variational inference (VI) frame-
work. (30) introduces kernels with random Fourier features
for meta-learning tasks. The kernel features are learned as
latent variables of a model to generate adaptive kernels. In
contrast, KOBO uses variational inference as an auxiliary
module to only learn a continuous latent kernel space; the
KerGPR optimization primarily drives the kernel learning.

Other approaches include Automatic Statistician (AS) (5)
which generates complex kernels as a context-free grammar
of simple kernels formed through their additions and multi-
plications. The best composite kernel is then automatically
selected through a greedy process. (11) and (15) suggest
improvements to the greedy search in AS. The closest work
to ours is (22). Authors replace the greedy search in AS with
BO in model space, using a novel “kernel kernel” to capture
similarity between function structures offered by different
kernels and speed up the search. In contrast, KOBO uses
a generative strategy to model a continuous latent kernel
space enabling easier optimization of the model evidence.

Authors in (14)(7)(23)(29) improve BO performance in
high-dimensional spaces by modeling the function struc-
ture via additive kernels. The objective is decomposed into
a sum of functions in low-dimensional space. KOBO com-
prehensive space of kernels from additive and multiplicative
compositions is capable of modeling more complex function
structures. Finally, (17), (9), and (10) perform optimization
in a continuous latent space learned by VAEs to circum-
vent categorical data. Authors of (8) use one-hot encoding
approximations for BO of categorical variables. KOBO bor-
rows from these ideas but applies them to kernel learning.

9. Limitations and Conclusion
Trading computation for sample efficiency: We are aware
that KOBO incurs heavy computation in estimating the
model evidence L. However, this does not affect sample effi-
ciency, since KerVAE training is sample-independent. Thus,
KOBO’s advantage is in reducing the sample evaluations of
f(x) (e.g., user burden) and not in total CPU cycles.

Overfitting to simple functions: As iterations progress,
KerGPR might learn a kernel more complex than the actual
target function f (See f1(x) in Table 1). Choosing a com-
plex kernel expands the surrogate function space, and may
need more samples to converge. To avoid kernel overfitting,
we can regularize the kernel complexity, i.e., the length and
norm of the kernel grammar codes.

Latent space interpretability: Current latent space learned
by KerVAE is abstract and lacks interpretability. An inter-
pretable latent space should offer improvements to KerGPR,
facilitating the use of simpler optimizers compared to the
expensive Bayesian Optimization in the latent space.

To conclude, we propose KOBO, a kernel learning method
for GPR. We design a continuous latent space of kernels
(using a VAE), and optimize that space via an auxiliary
GPR to output an optimal kernel K∗. This optimal kernel
better models the structure of the objective function, which
ensures sample efficiency. We show an applications in audio
personalization but believe the idea could be useful to other
real-world applications.
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A. Appendix
A.1. Bayesian Optimization Background

Bayesian optimization (6) broadly consists of the following
two modules:

(1) Surrogate model: A family of functions that serve
as candidates for the unknown objective function.
The functions are commonly drawn from a Gaussian
process generated by Gaussian Process Regression
(GPR). Given any point of interest x, GPR generates a
Gaussian posterior distribution for the function values
f(x) . The structure of the candidates is dictated by
the Gaussian distribution covariance kernel function.

(2) Acquisition function: A sampling strategy that pre-
scribes the point at which f should be observed next.
The GPR posterior model is used to evaluate the func-
tion at new points x′, and one is picked that maximizes
a desired metric. This new point x′ when observed will
maximally improve the GPR posterior.

Non-parametric model: Gaussian processes (28) are em-
ployed for black-box optimization because they provide a
non-parametric mechanism to generate a probabilistic sur-
rogate for the unknown function f . Given a set of samples
X = {x1, x2, . . . , xK} at which the function f has been
observed, i.e., we know F = {f(x1), f(x2), . . . , f(xK)},
we can identify an infinite number of candidate functions
that match the observed function values.

Curse of Dimensionality: The objective function in Eqn.
1 typically lies in a high dimensional space (i.e., h ∈ H ⊆
RN , N ≥ 500). Bayesian optimization works well for
functions of N < 20 dimensions (6); with more dimensions,
the search space H increases exponentially, and finding the
minimum with few evaluations becomes untenable. One
approach to reducing the number of queries is to exploit the
sparsity inherent in most real-world functions.

A.1.1. HIGH DIMENSIONAL BAYESIAN OPTIMIZATION

We assume our function in Eqn. 1 is sparse, i.e., there is a
low-dimensional space that compactly describes f , so f has
“low effective dimensions”. We consider ALEBO (18), a BO
method that exploits sparsity to create a low-dimensional
embedding space using random projections.

ALEBO(18): Given a function f : RN → R with effective
dimension df , ALEBO’s linear embedding algorithm uses
random projections to transform f to a lower dimensional
embedding space. This transformation must guarantee that
the minimum h∗ from high dimensional space H gets trans-
formed to its corresponding minimum y∗ in low dimensional
embedding space.
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The random embedding is defined by an embedding matrix
B ∈ Rd×N that transforms f into its lower dimensional
equivalent fB(y) = f(h) = f(B†y), where B† is the
pseudo-inverse of B. Bayesian optimization of fB(y) is
performed in the lower dimensional space Rd.

Our proposed idea KOBO builds on top of ALEBO, but we
are agnostic of any specific sparsity method.

A.2. More details on Evaluation and Results

A.2.1. SYNTHETIC FUNCTIONS

The synthetic functions employed in KOBO’s performance
evaluation are defined as follows,

(1) Staircase Functions: We generated functions that have
a discontinuous staircase structure to mimic the user
satisfaction scoring function in audio/ visual percep-
tion. A user’s perception might not change for a range
of filters so the score remains the same and might
change with sudden jumps for some filter choices, thus
leading to a flat shape in some regions and a steep curve
in other regions. The staircase structure results in the
function having infinite local minima, infinite global
minima, and zero gradient regions. These functions
are naturally not suited for gradient-based optimization
techniques. In this work, we use the function defined
in Eqn 13.

fP1(x) =

N∑
i

(⌊|xi + 0.5|⌋)2 (13)

where, −100 ≤ xi ≤ 100, i = 1, 2, . . . , N , xi is
filter x along dimension i. Infinite global minima at
fmin(x

∗) = 0, and the minimizers are −0.5 ≤ x∗
i <

0.5 (i.e.,) x∗
i ∈ [−0.5, 0.5), i = 1, 2, . . . , N

(2) Branin Functions: A commonly used smooth bench-
mark function in Bayesian optimization research.
BRANIN defined as

fB(x) = a(x2 − bx2
1 + cx1 − r)2

+ s(1− t)cos(x1) + s
(14)

where, xi ∈ [−5, 10], x2 ∈ [0, 15], a = 1, b =
5.1/(4π2), c = 5/π, r = 6, s = 10, t = 1/(8π).

It has three global minima at fmin(x
∗) =

0.397887, and the minimizers are x∗ =
(−π, 12.275), (π, 2.275), (9.42478, 2.475)

(3) Periodic Functions: We generate functions that ex-
hibit periodicity in its structure: MICHALEWICZ de-
fined in Eqn 15 to evaluate KOBO.

fM (x) = −
d∑

i=1

sin(xi)sin
2m

(
ix2

i

π

)
(15)

where, xi ∈ [0, π],m = 10, i = 1, 2, . . . .d.

The global minimum is at fmin(x
∗) = −9.66015, and

the minimizer is x∗ = (2.20, 1.57)

Synthetic Function Evaluation Parameters: In our syn-
thetic KOBO experiments, we optimize the functions with
the following parameters and/or configurations:

- f evals = 100 function evaluations

- r init = 5 initial random samples after which the acqui-
sition sampling begins.

- N = 2000,H ⊆ RN is the high-dimensional space.

- Rd, d = 20 is the low-dimensional embedding space
after sparse transformation.

- The kernel learning module of KOBO is employed to
learn the kernel after every 5 iterations of Function
space GPR (fGPR). i.e., we begin by using an SE
kernel for 5 initial iterations of fGPR and is replaced
by a newly learned kernel K∗ for the next five iterations
and so on.

- We restrict the maximum power of the fractional code
to 3, i.e., in Eqn 6, 0 ≤ ai + bi + ci + di + ei ≤ 3 for
i = 1, 2, 3, . . . .

- The KerVAE encoder and decoder blocks are identi-
cal with three fully connected hidden layers each and
ReLU activations. The KerVAE latent space dimen-
sions in 2.

- An SE kernel is used in KerGPR, which runs in the
kernel latent space Z of KerVAE.

- KerGPR runs for 20 iterations in the kernel latent space
Z to find the current best kernel K∗.

- We run 10 random runs of each experiment

A.2.2. ADDITONAL RESULTS

Visualizing with 1D synthetic functions: To visualize ker-
nel learning (as previously done for CO2 emissions data),
we sample 1D functions from GPs employing different ker-
nels {PER,RQ,MAT}. Figure 10 shows that in 15 function
evaluations, KerGPR learns the exact kernels for each, and
consequently, the fGPR posterior models the 1D functions
almost perfectly.

KerVAE Reconstruction: Figure 11 shows the KerVAE
reconstruction results. Figure 11(a) and (b) denote the
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Figure 10. Function structure modeling with KOBO: Objective function drawn from a GPR posterior using (a) Rational Quadratic (b)
Matérn, and (c) Periodic kernels. The black line denotes the true function. The orange line denotes the fGPR posterior mean function
model using Q = 15 samples.

input kernel code reconstruction respectively . Each row
in the input indicates the grammar-based representation rc
of some kernel kC; the corresponding row in the output
shows the KerVAE reconstructed code. The rc codes are of
length= 15 (hence 15 columns in each matrix in Figure 11).
KerVAE generates a near-perfect reconstruction as indicated
by the very small difference in Figure 11(c). This offers
confidence that KerVAE’s latent space effectively learns the
kernel space K.

Figure 11. KerVAE reconstruction: (Block 1) Input, (Block 2)
Reconstruction, (Block 3) Difference. White squares denote 0 in
code rc, light green denotes 1, and dark green denotes 2.

A.2.3. USER EXPERIMENT: AUDIO PERSONALIZATION

We consider optimizing high-dimensional black-box func-
tions in real-world applications such as audio personaliza-
tion with strict sample budgets. For instance, today’s hearing
aids aim to filter the audio with h so that the user’s hearing
loss is compensated. We aim to perform hearing aid tuning
by estimating a high-resolution personal frequency filter h∗

such that the user satisfaction f(h) is maximized if users
are willing to listen and rate some audio clips (Q queries)
prescribed by KOBO at home.

We recruit 6 volunteers of 4 male(s) and 2 female(s) with
normal hearing for the personalization experiment. We
apply two types of corruption to the audio played to the
volunteers.

First, we want to emulate hearing loss. We do this by em-

ploying the publicly available hearing loss profiles in the
NHANES (4) database as the corrupting filter b1. Second,
to emulate cheap speakers, we generate random distortions
by creating a random corrupting filter b2, each b2[j] selected
independently from [−30, 30]dB. A sample speech clip a
is filtered with the distorting filter b1 or b2 to obtain the
corrupted clip, r = b1:2 ∗ a.

The goal of the audio personalization task is to find the filter
ĥ∗ which when applied to the corrupted clip r should make
the resulting audio sound similar to the original uncorrupted
audio clip, i.e., r ∗ ĥ∗ = â ≈ a. In other words, the
personalization filter ĥ∗ should counteract the distortion
caused by b1 or b2.

The user satisfaction function f(h) is expensive to evaluate
as user feedback is finite and hence has strict sample con-
straints. As human hearing is not uniform across all audio
frequencies (3), a user’s audio perception might not change
for a range of filters so the satisfaction score remains the
same and might change with sudden jumps for some filter
choices, thus leading to a satisfaction function f(h) with
a flat shape in some regions and a steep curve in other re-
gions, i.e., a staircase shape. Thus, the audio personalization
problem is well suited for kernel learning BO methods like
KOBO.

User Querying: We query the volunteers and use their
feedback scores to construct the user satisfaction function.
This is done by choosing filters hj (prescribed by fGPR)
from the space of all filters H ⊆ RN (N = 4000). The
filter is applied to the audio played to the user, and their
score f(hj) is recorded. Repeating this process, we obtain
the black-box user satisfaction function. This function can
then be optimized to find ĥ∗, the personal filter.

A.2.4. USER EXPERIMENT: PROMPT-BASED IMAGE
GENERATION

Generating images that satisfy a particular prompt is a popu-
lar application for image generation models. In this section,
we explore augmenting broad image generative models —
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KOBO SE
Prompt: Green snake

Prompt: Sunset over a beach

Prompt: Pink Umbrella

Prompt: Scenery with many trees and grass

Prompt: Siamese cat

Table 4. Prompt-based image generation user results

that are not trained to handle text-based prompts — to pro-
duce/recommend images that fit a user’s requirement (or
“prompt”). This prompt-based image recommender can be
formulated as a black-box optimization problem by posing
the question as: “if a user rates few pictures generated by
the model, can the model find the “best” picture from the
space of all images?”

A user thinks of a particular prompt say ”I want to see
pictures of a sunset over a beach”. A pre-trained image
generator (ImVAE) generates images by sampling its latent
space. A GPR running on the image latent space prescribes
latent samples g and their corresponding image reconstruc-
tions y which are rated by the user. Eventually, GPR would
determine the optimal latent sample g∗ and the correspond-

ing image that best fits the prompt y∗. Several images may
receive similar scores from the user implying that the user
satisfaction function is a staircase (similar to audio person-
alization); a great candidate for KOBO.

For the experiment, we use a pre-trained VAE (20) (Im-
VAE). KOBO optimizes the user satisfaction on the Im-
VAE’s latent space I. Table 4 displays the image that
is the “best” for the corresponding prompt after Q =
5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (left to right, top to bot-
tom) queries as determined by KOBO and a conventional
GPR using SE kernel. KOBO quickly identifies images that
fit the user prompt within Q = 25 queries in contrast to
convention GPR that takes Q = 35 queries on average.


