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Abstract

We consider the problem of personalizing audio to maximize
user experience. Briefly, we aim to find a filter A*, which ap-
plied to any music or speech, will maximize the user’s sat-
isfaction. This is a black-box optimization problem since the
user’s satisfaction function is unknown. Substantive work has
been done on this topic where the key idea is to play audio
samples to the user, each shaped by a different filter h;, and
query the user for their satisfaction scores f(h;). A family of
“surrogate” functions is then designed to fit these scores and
the optimization method gradually refines these functions to
arrive at the filter A* that maximizes satisfaction.

In this paper, we observe that a second type of querying is
possible where users can tell us the individual elements h* [4]
of the optimal filter h*. Consider an analogy from cooking
where the goal is to cook a recipe that maximizes user satis-
faction. A user can be asked to score various cooked recipes
(e.g., tofu fried rice) or asked to score individual ingredients
(say, salt, sugar, rice, chicken, etc.). Given a budget of B
queries, where a query can be of either type, our goal is to
find the recipe that will maximize this user’s satisfaction.
Our proposal builds on Sparse Gaussian Process Regression
(GPR) and shows how a hybrid approach can outperform any
one type of querying. Our results are validated through sim-
ulations and real world experiments, where volunteers gave
feedback on music/speech audio and were able to achieve
high satisfaction levels. We believe this idea of hybrid query-
ing opens new problems in black-box optimization, and so-
lutions can benefit other applications beyond audio personal-
ization.'

1 Introduction

Consider the problem of personalizing content to a user’s
taste. Content could be audio signals in a hearing aid, a
salad cooked for the user, a personalized vacation package
designed by an Al agent, etc. Given the content ¢, we intend
to adjust the content with a linear filter /. Our goal is to find
the optimal filter A* that will maximize the user’s personal
satisfaction f(h).

Finding h* is difficult because the user’s satisfaction func-
tion f(h) is unknown; it is embedded somewhere inside the
perceptual regions of the brain. Hence, gradient descent is
not possible since gradients cannot be computed. Black box
optimization (BBO) has been proposed for such settings,
where one queries user-satisfaction scores for carefully sam-
pled filters h;. Using a budget of B such queries, BBO ex-

pects to estimate h* that is close to the true h*. Of course,
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reducing the query budget B is of interest and the effects of
lowering B have been studied extensively.

The above problem can be called “filter querying” because
the user is queried using different filters h; € RM. In
this paper, we discuss an extension to this problem where
a second type of querying is possible, called “dimension
querying”. With dimension querying, it is possible to query
the user for each dimension of the optimal filter, namely
h*[1],h*[2],..., R*[N]. In audio personalization, for exam-
ple, the optimal h* is the hearing profile of a user in the fre-
quency domain; if we accurately estimate the hearing pro-
file, we can maximize their satisfaction. With dimension
querying, a user can listen to sound at each individual fre-
quency j € {1, N} and tell us the best score h*[4]. The only
problem is that NV can be very large, say 8000 Hz, hence it
is prohibitive to query the user thousands of times.

To summarize, a filter query offers the advantage of under-
standing user satisfaction for a complete filter, while a di-
mension query gives optimal information for only one di-
mension at a time. In our analogy from cooking, filter query-
ing gives us the user satisfaction for a fully prepared recipe
(e.g., tofu fried rice), while dimension querying gives us
the user’s optimal liking for individual dimensions, like salt,
sugar, etc. This paper asks, for a given query budget B, can
the combination of two types of querying lead to higher user
satisfaction compared to a single type of querying? How
much is the gain from combination ,and how does the gain
vary against various application parameters?

Our solution builds on past work that uses Gaussian Process
Regression (GPR). Conventional GPR begins with a family
of surrogate functions for f(h) and estimates a posterior on
these functions, based on how well they satisfy the user’s
scores. Over time, GPR iterates through a two-step process,
first picking an optimal filter h; to query the user, and based
on the score f(h;), updates the posterior distribution. The
goal is to query and update the posterior until a desired crite-

ria is met. The mean of this posterior f (h) is now declared as

the surrogate for f(h) and h* = argmax f(h) is announced
as the final personalization filter.

When applied to our analogy, conventional GPR will pre-
scribe different recipes and based on scores from the user,
will construct a posterior on candidate satisfaction functions.
The next recipe will be chosen to be one that could return a
higher score than all past scores (say, Japanese sushi). In
essence, GPR tries to reason about the shape of the satisfac-
tion function using only recipe-based querying.



Our contribution lies in selecting recipes that expedite the
process of estimating the surrogate satisfaction function. If
the user has expressed high liking to sugar, and low liking
to salt, (and conventional GPR recommends sushi), then we
choose a “sweet sushi” recipe to update the posterior. We
encode this intuition into GPR’s mathematical framework —
we first sample a batch of ¢ filters from the posterior (as
candidates for the next query), but a single winner is se-
lected based on which has the strongest similarity to the
dimension-scores. Finally, these operations are performed
after GPR has been transformed into a sparse space, oth-
erwise the query budget B becomes too large.

Results show that spending some query budget on dimen-
sion queries (salt and sugar) as opposed to spending all the
budget on filter queries (full recipes) offers consistent ben-
efits. We lack mathematical proof, instead show empirical
results from extensive simulations and real-world experi-
ments. With real volunteers who were asked to rate audio
quality on a scale of [0 — 10], our proposed method, ORA-
CLEBO, achieves an average of 3.3 points higher satisfac-
tion, within a budget of B = 30 queries. Through simu-
lations with various satisfaction functions, we find that the
break-down between the two types of queries exhibits a
sweet spot. When the number of dimension queries increases
(or decreases) beyond a fraction of B, the achieved max-
ima deviates from the global maxima. We present sensitiv-
ity analysis and ablation studies, and discuss a number of
follow-up questions for future research.

2 Problem Formulation

Consider an unknown real-valued function f : H — R
where the domain is a compact subspace H C RV, N >
500. Let h* be the minimizer of f(h). We want to estimate
h* using a budget of B queries, where a query can be one of
two types:

1. The unknown function f can be sampled at a given h;.
This query yields f(h;). We call these filter queries, Q s.

2. An Oracle is assumed to know information about the
minimizer h*. The Oracle when queried can give us one
dimension of the vector h*, i.e., we can obtain h*[j], for
any given j € [1,2,...,N]. We call these dimension
queries, Qg.

Thus, the optimization problem is shown in Eqn. 1.

argmin || f(h) — f(h*)]]
heH (1

st. Qr+Qq<B

where Q) ¢, Qg are the number of filter and dimension queries
described above, and the query budget B < N.

The unknown function f may be non-convex, may not have
a closed-form expression, and its gradient is unavailable.
However, since it can be queried for a given h;, it is called a
black-box optimization problem. We approach this through
Bayesian Optimization that builds on Gaussian Process Re-
gression (GPR), Expected Improvement acquisition func-
tion, and sparsity transformations (to cope with the large gap

between N and B). We review the relevant background on
Bayesian optimization next, followed by our proposed algo-
rithm, ORACLEBO.

3 Bayesian Optimization

Bayesian optimization (Frazier 2018) broadly consists of the
following two modules:

(1) Surrogate model: A family of functions that serve as
candidates for the unknown objective function. The func-
tions are commonly drawn from a Gaussian process gen-
erated by Gaussian Process Regression (GPR). This es-
sentially means that GPR generates a Gaussian posterior
distribution of the likely values function f can take at any
point of interest h.

(2) Acquisition function: A sampling strategy that pre-
scribes the point at which f should be observed next. The
GPR posterior model is used to evaluate the function at
new points h’, and one is picked that maximizes a desired
metric. This new point &’ when observed will maximally
improve the GPR posterior.

We review GPR next, followed by a popular acquisition
function called “Expected Improvement”.

3.1 Gaussian Process Regression (GPR)

Non-parametric model: Gaussian processes (Wang 2020)
are helpful for black-box optimization because they pro-
vide a non-parametric mechanism to generate a surrogate
for the unknown function f. Given a set of samples X =
{h1,h2,...,hx} at which the function f has been ob-
served, i.e., we know F = {f(hy), f(h2),..., f(hk)}, we
can identify an infinite number of candidate functions that
match the observed function values. Figure 1 shows an ex-
ample function f in 1-dimensional space.
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Figure 1: A GPR Posterior: The black “plus” symbols mark all
the observed points. The dashed-blue line is the true f, and the red
line is the estimated f (the mean of the posterior). The light blue
shaded area marks the variance.

Function distribution & Kernel: GPR generates the sur-
rogate model by defining a Gaussian distribution over these
infinite candidate functions. Given the set of observations
(X, F), the mean p of the distribution is the most likely sur-
rogate of the function f. The covariance K is a kernel that
dictates the smoothness (or shape) of the candidate functions
and must be chosen based on domain knowledge of f. One
commonly used kernel is the ARD (Automatic Relevance
Determination) power exponential kernel:



k(h,h') = ag exp —%(h - h-n) @

where, ap and ¥ = diag; (o) are the kernel parameters.

Prior & Posterior: Before any observations, the distribution
defined by K and ¢ = 0 forms the prior distribution. Given
a set of observations (X, F), the prior is updated to form the
posterior distribution over the candidate functions. Figure 1
shows the distribution of candidates and the mean surrogate
model of an example f. With more observations, the current
posterior serves as the prior, and the new posterior updates
from the new observations. Eqn. 3 models the function f
with the posterior generated by GPR.

P(F|X) ~ N(F|p, K) ©)

where, pp = {p(h1), 1(h2), ..., p(hi)} and Kij=k(hi, hy),
k represents a kernel function.

Predictions: To make predictions 7 = f(X') at new points
X, GPR uses the current posterior P(F|X) to define the
joint distribution of F and F, P(F, F|X, X) in Eqn. 4.

Do s )

where, K = k(X,X), K = k(X,X), K = k(X,X) and

(1(X), u(X)) = 0.

The conditional distribution and hence prediction of Fis de-
rived from the joint distribution shown in Eqn. 5. The proof
and explanations of all the above are clearly presented in
(Wang 2020)).

N»

P(F|IF, X, %) ~ N(KTK1F, K - KTK"'K) (5

3.2 Acquisition function

In each GPR iteration, a new h must be acquired such that
the observed f(h) maximally improves the posterior from
the previous iteration. This requires a judicious sampling
strategy that optimizes an improvement metric. “Expected
Improvement” (EI) is one such popular metric that we will
build on in this paper.

Expected Improvement: Given previous observations
D = (X, F), let f* = mingcx f(z) be the current func-
tion minimum (i.e., the minimum observed till now). If a
new observation f(h) is made at h, then the minimum now
will be one of these:

s f(h)if f(h) < f*

o frif f(h) > f*
Hence, the improvement from observing f at h is
[f* = f(h)]T, where, a™ = max(a, 0).

We want to choose h that maximizes this improvement.
However, f(h) is unknown until the observation is made,
so we choose h that maximizes the expectation of this im-
provement. Expected Improvement is thus defined as:

EI(h|X, F) = E[[f* — f(h)]"|X, 7] (6)

where, E[-|X, F] is the expectation taken on the GPR pos-
terior distribution given observations (X', 7). This posterior
is as specified in Eqn. 3. Thus, the next sample to make an
observation at is:

h = argmax EI(h;| X, F) (7)
h; RN

3.3 High dimensional Bayesian Optimization

Curse of dimensionality: The objective function in Eqn. 1
typically lies in a high dimensional space (i.e., h € H C
RY, N > 500). Bayesian optimization works well for func-
tions of < 20 dimensions (Frazier 2018); with more dimen-
sions, the search space H increases exponentially, and find-
ing the minimum with few evaluations becomes untenable.
One approach to reducing the number of queries is to exploit
the sparsity inherent in most real-world functions.

We assume our function in Eqn. 1 is sparse, i.e., there is a
low-dimensional space that compactly describes f, so f has
“low effective dimensions”. We review ALEBO (Letham
et al. 2020), a class of methods that exploit sparsity to create
a low-dimensional embedding space using random projec-
tions. Our proposed idea builds on top of ALEBO, but we
are actually agnostic of any specific sparsity method.

3.4 Linear Embedding using Random Projections

Random Projections: Given a function f : RY — R with
effective dimension df, ALEBO’s linear embedding algo-
rithm uses random projections to transform f to a lower di-
mensional embedding space. This transformation must guar-
antee that the minimum A* from high dimensional space H
gets transformed to its corresponding minimum y* in low
dimensional embedding space. The right side of Figure 2
aims to visualize this transformation. Without satisfying this
property, optimization in low-dimensions is not possible.

The random embedding is defined by an embedding ma-
trix B € R that transforms f into its lower dimen-
sional equivalent fg(y) = f(h) = f(Bfy), where BT is
the pseudo-inverse of B. Bayesian optimization of f5(y) is
performed in the lower dimensional space R¢.

Clipping to 7{: When f is optimized over a compact subset
H C R, We cannot evaluate f outside 7{. One approach to
prevent any embedding point y from being projected outside
of H is to “clip” such points to H. This is done by projecting
the points back into H, i.e., fz(y) = f(px(Bly)) where,
px : RY — RY is the clipping projection. However, this
clipping to H causes nonlinear distortions.

Instead, constraining the optimization to only points in )
that do not project outside H, i.e., Bty € #, prevents dis-
tortions; however, it also reduces the probability of the em-
bedding containing the optimum ~*. ALEBO remedies this
by choosing d > dy (an embedding space larger than f’s
effective dimensions). Then, the acquisition function evalu-



ated in the constrained embedding space is given as:

argmax EI(y)
ver? ®)

st. —1<Biy<1

where the constraint —1 < BTy < 1 are linear and form a
polytope.

Modifications to the Kernel: ARD kernels in H (shown
in Eqn. 2) do not translate to a product kernel in embed-
ding ), since each dimension in H is independent (diagonal
matrix ¥ in Eqn. 2). However, moving along one dimen-
sion in embedding is similar to moving across all dimen-
sions of H. To combat this, a Mahalanobis Kernel is used
in the embedding. Any two points in the embedding are pro-
jected up to RN (BT) and then projected down to H (A),
fe(y) = f(Bly) = f(AB'y) and Cov[fz(y), fa(Y)] =
exp{—(y—y')"T(y—y')} where T' = (AT"BT)"S(ATBT)
is a symmetric positive definite matrix. This finally ensures
correctness in sparsity-based Bayesian Optimization (BO).

With this review of Bayesian Optimization and sparsity-
based ALEBO, we discuss our algorithm, ORACLEBO.

4 ORACLEBO

ORACLEBO’s main contribution is in modifying ALEBO’s
acquisition function (Eqn. 8) to incorporate queries of
type @4, namely dimension queries. ALEBO and related
sparsity-based algorithms are designed to use filter queries
of type @ ; modifying these algorithms to also incorporate
@4 needs cautious design. This is because filter samples h;
are N-dimensional vectors while dimension queries h*[j]
are scalar values. Combining these modalities correctly, es-
pecially through the sparsity transformations in ALEBO, re-
quires reworking at the heart of sparsity-based BO methods.

Figure 2(a) illustrates the design of ORACLEBO — the mod-
ules in gray are the proposed extensions over literature.
The two key modules are (1) Batch Acquisition Function
(BAF), and (2) Dimension Matched Sampler (DMS).

Conventional SparseBO obtains a single sample h’ from
the acquisition function and makes a function observation
f(R'). This observation is then used to update the GPR
posterior. In contrast, the BAF module in ORACLEBO
intends to pick a batch of ¢ (jointly optimal) samples
{hy, Ry, ..., by} and the DMS module orders them prefer-
entially by matching them against the dimensional informa-
tion of the minimizer h*[j], j € L. Through this method, we
are selecting the next filter sample A’ by essentially combin-
ing the “wisdom” of both types of querying. Said differently,
we first sample a batch of candidates which are all “good”
choices as per the EI metric (e.g., each sample is a differ-
ent sushi recipe), and then, dimension matching makes the
final selection in favor of one b’ € {h},hs,...,h} that
aligns with the optimal h*[j], j € L. This means if the user
has a high preference for the sweet dimension, then the next
Qf query h' becomes a “sweet sushi recipe”. The details are
presented next.

4.1 Batch Acquisition Function (BAF)
Instead of picking one sample h’, BAF proposes to pick a
batch of ¢ samples {h},h,. ,h;} = B'T{y’l, Yas s Yot
that jointly maximize the acquisition function.

We assign a joint metric, g-ExpectedImprovement (qEI), to a
set of ¢ candidate points Q" = {y3,5, ...,y } in the search
space ). This is realized through two steps:

(1) Sampling the joint distribution of ¢ points under the cur-
rent posterior using MCMC sampling (Neal 2003) to ob-
tain @ = {y1,%2,...,Yq}

(2) Evaluating joint metrics qEI(y;) for y1., over the current
minimum f* = minycy f(BTy) as follows:

GEI(yi| Dy, Q) = E[[f* — f(y:)]"[Dn, Q]
qEI(Q) = {qEL(y;| Dy, Q)}
where D,, denotes current set of observations. Compared to

EI(y;|D,,) in Eqn. 6, gEI(y;) marginalizes the expectation
over the candidate set Q.

€))

We select the candidate set Q' of highest expected improve-
ment as follows:

Q' = {1, ... argmax  maz(qEI(Q))

Q:{yhy%nqu}
st. —1<Bfy/ <1 w,e

Yyt =

(10
where each Q is ranked with the highest qEI(y;) fory; € Q.
Note that Q is subject to the constraint from Eqn. 8; this en-
sures BAF operates within the bounds of  under ALEBO’s
random projections to lower-dimensional space, R.

These points and their corresponding qEI metric values
(Q',qEI(Q")) are then passed as input to DMS.

4.2 Dimension Matched Sampler (DMS)

DMS’s task is to output one sample i/ = BTy’ that
best matches the dimensional information of the minimizer
h*[4],j € L obtained from @4 type queries. This 2’ will be
the sample at which the @ filter query is made to update
the GPR posterior. Clearly, the DMS algorithm must oper-
ate in high-dimensional space H as both 4’ and h* € H.
In contrast, the BAF module operates in the d—dimensional
embedding space R?, hence the ¢ candidates lie in this
embedding space. To remedy this, the BAF’s outputs in
the embedding space are projected up to H, ie., Q' =
Wi ya, -5 yyt — T = {hy, hy, ..., hy} as shown in Fig-
ure 2(a) (the green box labeled BY). Figure 2(b) illustrates
the translation of any point from high-dimensional space H
to the low-dimensional embedding space )/ and vice versa.
Since DMS utilizes the BAF’s qEI, the ¢ candidate samples
Q’ chosen wherein adherence to the box constraints in Eqn.
8. This ensures that the g candidates in high-dimensional
space 7' lie inside H, thereby avoiding any non-linearity
due to clipping.

Once Q' has been translated to higher dimensional 7/, DMS
uses a joint likelihood measure to preferentially order the
q samples based on their degree of similarity to the L di-
mension queries h*[j],j € L as shown in Eqn. 11. Given
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Figure 2: System flow: ORACLEBO consists of three modules: BAF, DMS, and GPR posterior. Green boxes denote the system inputs and
hyper-parameters, and blue marks the module outputs. The right figure shows the transformation between the high and low dimensional

spaces, made feasible by the random embedding matrix in ALEBO.

h*[j],7 € L queries, DMS’ joint likelihood measure com-
putes the likelihood of a filter sample ~ maximally improv-
ing the GPR posterior when observed.

= [ «E1(n

jeL
h' = argmax P(h|h*[L])

heT’

where, G; = N(u = h*[j],0) is a Gaussian distribution
with mean h*[j] and variance o for each ()4 dimension
available j € L, and gEI(h}) is the BAF acquisition met-
ric of a candidate sample h/.

P(h|h*[L
(11)

The maximizer in Eqn. 11, 1/, is the sample at which the user
is queried. This A’ and the user’s satisfaction score f(h’)
are then projected down to the embedding as (v, f(BTy)).
Finally, this tuple is used to update the GPR posterior for the
next iteration of ORACLEBO.

5 Experiment: Synthetic BlackBox Functions

We first present experiments on various synthetic functions
f(h). We pretend the function is a black-box, but filter and
dimension queries are feasible. Obviously, because we ac-
tually know the function, we will evaluate how close ORA-
CLEBO can get to the global minima.

We evaluate two sets of objective functions:

(1) Staircase Satisfaction Functions that are shaped like a
staircase (see Figure 3) and roughly mimic how humans rate
their experiences in discrete steps (Al-Roomi 2015).

(2) Benchmark Functions commonly used in Bayesian
optimization research (Sonja Surjanovic 2013), such as
BRANIN, HARTMANNG, and ROSENBROCK.

Baseline and Metrics: We consider a baseline that ex-
tends ALEBO with the additional information from L di-
mensional queries. This implies that ALEBO’s search space
can be reduced from RY to RYN—L. Our evaluation met-
ric is Regret, which is the difference between the predicted

minimum and true global minimum (f(h*) — f(h*)). All

Figure 3: Satisfaction Function P1: Discontinuous staircase
structure, containing infinite zero gradient regions.

reported results are an average of 10 different runs. More
details on the objective functions and evaluation parameters
are included in the Appendix.

In the following figures, X-axis label “function evaluations”
indicates the number of filter queries (Q)¢), each of which
produces a GPR iteration. Also, L denotes the number of
dimension queries () 4). For comparison, we mark points on
the graph that use the same query budget, B = Q; + Q4.

Comparison to ALEBO(L): Figure 4 shows the perfor-
mance of ORACLEBO against ALEBO(L). ALEBO(L = 0)
shows the weakest performance because it does not bene-
fit from dimensional queries. With 5 dimensional queries,
ALEBO(L = 5) shows immediate gain since it has to
only search RN~°. ORACLEBO shows further improve-
ment with L = 5, implying that the combination of () and
Q4 queries are beneficial, even though the search space is
RN . Observe that points marked with stars all have the same
query budget B = 90, thus, ORACLEBO achieves high sat-
isfaction (low regret) for a given B. Of course, if B is too
small, say < 30, then the gains reduce. This is understand-
able because the GPR posterior has not yet converged. Fi-
nally, when L=15, the regret is even lower.

Effect of Varying L: Figure 5 reports the impact of increas-

2For readability, we abuse the notation ()4, which is equal to
the number of dimension queries, L.
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Figure 5: Different number of ()4 queries on ORACLEBO.

ing dimension queries, L, on regret. Observe that for a fixed
query budget B = 90, increasing L is beneficial but only
up to L = 15. Increasing L further offers more information
about the optimal h* but at the expense of lowering the num-
ber of Q¢ queries. Evidently, for the staircase function, the
empirical optimal for L is in the neighborhood of 15.

Which L out of N queries? Given L = 15 queries, say, dif-
ferent subsets of NV dimensions can be chosen. Let us denote
this subset as £. If f(h) hardly varies along the dimensions
included in £, then £ contributes little to estimating the sat-
isfaction function. Figure 6 shows ORACLEBO’s regret on
two different £. Note that because the objective function f
is synthesized, the variation of f against any dimension y
is known. In Lz, we select the L dimensions of largest
variances; L pqnq denotes the randomly selected dimensions
from {1, N'}. Results show that Lr,, achieves lower regret
(median and variance) compared to £ g4, 4. Thus, in real ap-
plications, it helps to choose L dimensions that are likely
to influence the user’s satisfaction, say salt and sugar, com-
pared to less sensitive dimensions, say thyme and oregano.
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Figure 6: Distribution of ORACLEBO’s regret on different
Qq subsets L1,y and Lrang.

Various objective functions: Figure 7 summarizes regret
across a range of objective functions, including three differ-

ent staircase functions (denoted P1 to P3) and 3 standard
benchmark functions. Results confirm that ORACLEBO’s
performance improves until L = 15 dimension queries.
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Figure 7: Different functions f(h) with varying Q4 queries.

Hyperparameter Selection: Parameters in BAF and DMS
modules include: IV, dimension of the filter; d, dimension of
the embedding; ¢, number of candidates BAF outputs, and
o, the dimensional variance in DMS.

Table 1 tabulates our analysis of ORACLEBO’s performance
over these parameters. N = {500,2000},d = 4,q =
5,0 = 1 yields the minimum regret for satisfaction func-
tion P1 with Q4 = 5,Q; = 100. We pick N = 2000 to
highlight ORACLEBO’s performance in high-dimensional
spaces. Thus, our choice of using these parameters for our
experiments is informed by the analysis.

N d (g,0)

5.1 | (2,02) | 2,10) | (7,0.2) | (7,10)
4 83 445 316 1459 1459
500 | 10 | 148 166 237 760 883
20 | 477 551 609 1201 1255
4 90 242 514 543 628
2000 | 10 | 2166 | 2331 2753 2331 2753
20 | 2677 | 2764 3125 2764 3125
4 | 513 606 1268 1268 1268
4000 | 10 | 1532 | 1627 2154 4006 5278
20 | 1749 | 1993 3332 | 10213 | 10213

Table 1: Hyperparameter analysis on regret for P1.

6 Experiments: Audio Personalization

This section reports experiments with real volunteers in the
context of personalizing hearing aids. Today’s hearing aids
aim to filter the audio with & so that the user’s hearing loss
is compensated, and their satisfaction f(h) is maximized.
Hearing aids prescriptions exactly perform the process of
dimension querying where different frequency tones j are
played to the user, and their optimal audibility is recorded
as h*[j]. To minimize user burden, audio clinics play around
L=T7 frequency tones (from different octaves) and interpolate
through them to generate the user’s personalized filter. This
filter is called the audiogram.

Interpolation is obviously a coarse approximation of the
user’s true personal filter, h*. We expect to improve the
user’s satisfaction over their audiogram, using a modest
number of Q)¢ queries prescribed by ORACLEBO. In other
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Figure 8: User score comparison on (a) L = 5 on hearing-loss profile and random profile. (b) L = [1, 3] on random profile.

words, the user can attain higher satisfaction f * if they are
willing to listen and rate some audio clips (Q)¢) at home.

For experimentation, we invited 3 volunteers with no hear-
ing loss. To emulate hearing loss, we played audio that was
deliberately “corrupted” with hearing loss profiles from
the public hearing-loss dataset in NHANES (Salmon et al.
2022). This corrupted audio obviously yields a poor satis-
faction score from our volunteers. We compute the coarse-
grained audiogram for the volunteers and compare ORA-
CLEBO against this “baseline”.

Results: Figure 8(a) plots the final satisfaction score from
the 3 volunteers (U1, U2, U3), first for the “Audiogram”
experiment, and then for a “Random” filter experiment (to
be described soon). The Corrupted signal obviously re-
ceives a low score, but the interpolated audiogram, labeled
Baseline, considerably improves the score. ORACLEBO
is still able to match/improve user satisfaction with Qg = 5
and )y = 25 queries. With fewer )y of 5 and 15, ORA-
CLEBO could not outperform Baseline as the function
f’s search space R*%°0 had not been sufficiently sampled.

The audiogram Baseline performs quite well primarily
because human hearing loss is reasonably flat within oc-
taves, hence, interpolation is adequate. We thus explore an-
other application that injects more complex audio distor-
tions, e.g., a cheap music speaker.

We again emulate this distortion by deliberately corrupting
the audio with a random filter h, each h[j] selected inde-
pendently from [—30, 30]dB. Similar interpolation as an au-
diogram, using L = 5, will give us a new Baseline. Fig
8(a)-Random plots the results for the same 3 users. ORA-
CLEBO improves the satisfaction scores even with Qs = 15
queries, and achieves the maximum with Q) y = 20 queries.

We also investigate the degradation of user satisfaction with
fewer dimensional queries L = 1, 3. Figure 8(b) reports the
results for only the Random distortion filter. Evidently, the
degradation is graceful, i.e., as L reduces, more )y filter
queries are needed to achieve the same level of personal sat-
isfaction. The audio demos at various stages of the optimiza-
tion are made available at (ora 2023).

7 Related Work

To the best of our knowledge, ORACLEBO is the first work
that combines two different types of queries, @ ¢ and Q 4, for

Bayesian Optimization. We also believe such hybrid query-
ing has not been applied in audio personalization. The clos-
est work in the application context is (Solnik et al. 2017)
where authors used conventional BO to search for the best-
rated cookie recipe at Google. We believe more applications
can benefit and the burden of querying users can become
practical with dimension querying (Q4). Of course, BO has
been extensively used to solve complex problems that do
not have humans in the loop. These include material science
(Ueno et al. 2016), medicine (Negoescu, Frazier, and Pow-
ell 2011), hyperparameter tuning in neural networks (Snoek,
Larochelle, and Adams 2012), etc.

ORACLEBO inherits sparsity-based BO frameworks based
on low-dimensional embeddings. These papers use linear
random projections to map from high to low-dimensional
spaces (Qian, Hu, and Yu 2016)(Wang et al. 2016)(Binois,
Ginsbourger, and Roustant 2020)(Letham et al. 2020). Au-
thors of (Garnett, Osborne, and Hennig 2013)(Lu et al.
2018) use a Gaussian Process to simultaneously learn the
model and the embedding. Non-linear embeddings are learnt
using Variation Autoencoders in (Gémez-Bombarelli et al.
2018)(Moriconi, Deisenroth, and Sesh Kumar 2020)(Lu
etal. 2018). ORACLEBO is agnostic to these algorithms and
we expect their advantages to reflect in our performance as
well. On a similar note, various papers modify the kernel
(Kandasamy, Schneider, and P6czos 2015)(Gardner et al.
2017)(Mutny and Krause 2018)(Wang et al. 2018) to restrict
the candidate function choices (Oh, Gavves, and Welling
2018), reflecting additional structure in the objective func-
tion. LineBO (Kirschner et al. 2019) optimizes the acquisi-
tion function along one-dimensional lines. TURBO (Eriks-
son et al. 2019) employs trust regions around the current
minimizer. (Oh et al. 2019), (Eriksson and Jankowiak 2021)
use sparsity creating prior. The performance of ORACLEBO
can be boosted with such kernel manipulations.

8 Follow-up Work and Conclusion

This paper formulates a new problem in black-box opti-
mization where an Oracle can reveal information about the
minimizer, 2*. Importantly, this problem maps to real-world
human-centric applications, and solutions that achieve a low
query budget B can lead to societal benefits. This paper is
a first step in this direction, starting with an empirical treat-
ment of the problem. However, we believe the findings are
promising and open doors to follow-up work. For instance,
(1) an analytical treatment on convergence is needed for the



hybrid @y + Q4 querying. (2) If j can be freely chosen in
h*[4], how many and which j’s are optimal, given the query
budget B? (3) Can neural networks learn kernels, embed-
dings, and other parameters? (4) What other applications
lend themselves to the notion of hybrid querying? We hope
ORACLEBO serves as a stepping stone to solving important
problems along these directions.
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