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Abstract

We consider the problem of personalizing audio to maximize user experience.
Briefly, we aim to find a filter h∗, which applied to any music or speech, will
maximize the user’s satisfaction. This is a black-box optimization problem since
the user’s satisfaction function is unknown. The key idea is to play audio samples to
the user, each shaped by a different filter hi, and query the user for their satisfaction
scores f(hi). A family of “surrogate” functions is then designed to fit these scores
and the optimization method gradually refines these functions to arrive at the filter
ĥ∗ that maximizes satisfaction.

In this paper, we observe that a second type of querying is possible where users
can tell us the individual elements h∗[j] of the optimal filter h∗. Given a budget of
B queries, where a query can be of either type, our goal is to find the filter that will
maximize this user’s satisfaction.

Our proposal builds on Sparse Gaussian Process Regression (GPR) and shows
how a hybrid approach can outperform any one type of querying. Our results are
validated through simulations and real world experiments, where volunteers gave
feedback on music/speech audio and were able to achieve high satisfaction levels.
We believe this idea of hybrid querying opens new problems in black-box optimiza-
tion, and solutions can benefit other applications beyond audio personalization.

1 Introduction
Consider the problem of personalizing content to a user’s taste. Content could be audio signals in a
hearing aid, a salad cooked for the user, etc. Given the content c, we intend to adjust it with a linear
filter h. Our goal is to find the optimal filter h∗ that will maximize the user’s personal satisfaction
f(h). Finding h∗ is difficult because the function f(h) is unknown; it is embedded somewhere
inside the perceptual regions of the brain. Black box optimization (BBO) has been proposed for such
settings, where one queries user-satisfaction scores for carefully sampled filters hi. Using a budget of
B such queries, BBO estimates ĥ∗ that is close to the true h∗.

The above problem can be called “filter querying” because the user is queried using different filters
hi ∈ RN . In this paper, we discuss an extension to this problem where a second type of querying
is possible, called “dimension querying”. With dimension querying, the user can be queried for
each dimension of the optimal filter, namely h∗[1], h∗[2], . . . , h∗[N ]. In audio personalization, for
example, the optimal h∗ is the hearing profile of a user in the frequency domain; if we accurately
estimate the hearing profile, we can maximize their satisfaction. With dimension querying, a user can
listen to sound at each individual frequency j ∈ {1, N} and tell us the best score h∗[j]. The only
problem is that N can be very large, say 8000 Hz, hence it is prohibitive to query the user thousands
of times.
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Our solution builds on past work that uses Gaussian Process Regression (GPR). Conventional GPR
models a surrogate f̂(h) for the user satisfaction function f(h). The personalization filter is thus
obtained as ĥ∗ = argmax f̂(h). Our contribution lies in encoding dimension queries in GPR’s
mathematical framework – we first sample a batch of q filters from GPR’s posterior (as candidates
for the next query), but a single winner is selected based on which has the strongest similarity to the
dimension-scores. Finally, these operations are performed after GPR has been transformed into a
sparse space, otherwise the query budget B becomes too large.

Results show that spending some query budget on dimension queries as opposed to spending all
the budget on filter queries offers consistent benefits. We show empirical results from extensive
simulations and real-world experiments. With real volunteers who were asked to rate audio quality
on a scale of [0− 10], our proposed method, ORACLEBO, achieves an average of 3.3 points higher
satisfaction, within a budget of B = 30 queries. Through simulations with various satisfaction
functions, we find that the break-down between the two types of queries exhibits a sweet spot.

2 Problem Formulation
Consider an unknown real-valued function f : H → R where H ⊆ RN , N ≥ 500. Let h∗ be the
minimizer of f(h). We want to estimate h∗ using a budget of B queries, where a query can be one of
two types:

1. f can be sampled at a given hi. This query yields f(hi). We call these filter queries, Qf .
2. An Oracle is assumed to know information about h∗. The Oracle, when queried, can give us

one dimension of h∗, i.e., h∗[j], for any given j ∈ [1, 2, . . . , N ]. We call these dimension
queries, Qd.

Thus, the optimization problem is,
argmin
ĥ∈H

||f(ĥ)− f(h∗)||2

s.t. Qf +Qd ≤ B
(1)

where Qf , Qd are the number of filter and dimension queries, and the query budget B ≪ N . f may
be non-convex, may not have a closed-form expression, and its gradient is unavailable. We assume f
is sparse i.e., there is a low-dimensional space that compactly describes f , so f has “low effective
dimensions". We employ Sparse Bayesian Optimization that builds on Gaussian Process Regression
(GPR). We review the relevant background on Bayesian optimization in the Appendix.

3 ORACLEBO
SparseBO methods like ALEBO [14] exploit the sparsity of f to create a low-dimensional embedding
space Y ⊆ Rd, d << N corresponding to H ⊆ RN through random projections (B†) using only
Qf filter queries. ORACLEBO’s main contribution is in modifying ALEBO’s acquisition function
to incorporate queries of type Qd, namely dimension queries. Figure 1(a) illustrates the design of
ORACLEBO – the modules in gray are the proposed extensions over literature. The two key modules
are (1) Batch Acquisition Function (BAF), and (2) Dimension Matched Sampler (DMS).

3.1 Batch Acquisition Function (BAF)
Instead of picking one sample h′, BAF picks q samples {h′

1, h
′
2, . . . , h

′
q} = B†{y′1, y′2, . . . , y′q} that

jointly maximize the acquisition function (B† denotes the sparse transformation). We assign a joint
metric, q-ExpectedImprovement (qEI), to a set of q candidate points Q′ = {y′1, y′2, . . . , y′q} ∈ Y .

qEI(yi|Dn,Q) = E[[f∗ − f(yi)]
+|Dn,Q]

qEI(Q) ≜ {qEI(yi|Dn,Q)}
(2)

where Dn denotes current set of observations. We select the candidate set Q′ of highest expected
improvement as follows:

Q′ = {y′1, y′2, . . . , y′q} = argmax
Q={y1,y2,...,yq}

max(qEI(Q))

s.t. − 1 ≤ B†y′i ≤ 1 ∀y′i ∈ Q′
(3)

Note that the box constraint ensures BAF operates within the bounds of H in the sparse space. These
points and their corresponding qEI metric values (Q′, qEI(Q′)) are then passed as input to DMS.
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Figure 1: System flow: ORACLEBO consists of three modules: BAF, DMS, and GPR posterior. Green boxes
denote the system inputs and hyper-parameters, and blue marks the module outputs. The right figure shows the
transformation between the high and low dimensional spaces, made feasible by the random embedding matrix in
ALEBO.

3.2 Dimension Matched Sampler (DMS)
DMS selects one sample h′ = B†y′ that best matches the information of h∗[j], j ∈ L from Qd

queries. A Qf query is made at this h′ to update the GPR posterior. Clearly, the DMS algorithm
must operate in high-dimensional space H as both h′ and h∗ ∈ H. In contrast, the BAF module
operates in the d−dimensional embedding space Y ⊆ Rd. To remedy this, the BAF’s outputs in
the embedding space are projected up to H, i.e., Q′ = {y′1, y′2, . . . , y′q} → T ′ = {h′

1, h
′
2, . . . , h

′
q} as

shown in Figure 1(a) (the green box labeled B†). Figure 1(b) illustrates the translation of any point
from high-dimensional space H to the low-dimensional embedding space Y and vice versa.

DMS uses a joint likelihood measure to preferentially order the q samples based on their degree of
similarity to the L dimension queries h∗[j], j ∈ L

P (h|h∗[L]) =
∏
j∈L

qEI(h)Gj(h)

h′ = argmax
h∈T ′

P (h|h∗[L])
(4)

where, Gj = N (µ = h∗[j], σ) is a Gaussian with mean h∗[j] and variance σ for each Qd j ∈ L.

4 Experiment: Synthetic BlackBox Functions
We first present experiments on synthetic functions such as Staircase Satisfaction Functions (see
Figure 5 (in Appendix)) that roughly mimic how humans rate their experiences in discrete steps [2].

Baseline and Metrics: We consider a baseline that extends ALEBO with L dimension queries.
Thus ALEBO’s search space is reduced from RN to RN−L. Our evaluation metric is Regret
= (f(ĥ∗) − f(h∗)). In the following figures, X-axis label “function evaluations” indicates the
number of filter queries (Qf ), L denotes the number of dimension queries (Qd). For comparison,
we mark points on the graph that use the same query budget, B = Qf +Qd

1. More details on the
objective functions and evaluation parameters are included in the Appendix.

Comparison to ALEBO(L): Figure 2(a) shows the performance of ORACLEBO against ALEBO(L).
ALEBO(L = 0) performs the weakest because it does not use any Qd. ALEBO(L = 5) shows
immediate gain since it searches only RN−5. ORACLEBO shows further improvement, implying that
the combination of Qf and Qd queries are beneficial, even though the search space is RN . Observe
that points marked with stars all have the same query budget B = 90, thus, ORACLEBO achieves
high satisfaction (low regret) for a given B. When L=15, the regret is even lower.
Effect of Varying L: Figure 2(b) reports the impact of increasing L, on regret. For a fixed B = 90,
increasing L is beneficial but only up to L = 15. Increasing L further offers more information about
the optimal h∗ but at the expense of the number of Qf queries. Evidently, for the staircase function,
the optimal L is around 15.

1For readability, we abuse the notation Qd, which is equal to the number of dimension queries, L.
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Figure 2: (a) Performance on ALEBO(L) and ORACLEBO. (b) Different number of Qd queries on ORACLEBO.

We include further analyses such as Hyperparameter selection and results for commonly used
benchmark functions such as BRANIN, HARTMANN6, and ROSENBROCK [25] in the Appendix.
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Figure 3: User score comparison on (a) L = 5 on hearing-loss profile and random profile. (b) L = [1, 3] on
random profile.

5 Experiments: Audio Personalization
We report experiments with volunteers in the context of personalizing hearing aids. Hearing aids
filter the audio with h so that the user’s hearing loss is compensated, and their satisfaction f(h) is
maximized. Hearing aid prescriptions exactly perform dimension querying where different frequency
tones j are played, and their audibility is recorded as h∗[j]. Audio clinics play around L=7 tones and
interpolate through them to generate the user’s personalized filter called the audiogram. Interpolation
is a coarse approximation of the user’s true personal filter, h∗. We expect to improve the user’s
satisfaction over their audiogram, using a modest number of Qf queries prescribed by ORACLEBO.

We invited 3 volunteers with no hearing loss. To emulate hearing loss, we deliberately corrupted the
audio (“Corrupted”) with hearing loss profiles from the public hearing-loss database, NHANES
[22]. We compute the coarse-grained audiogram and compare ORACLEBO against this “Baseline”.

Figure 3(a) plots the satisfaction score from the 3 volunteers (U1, U2, U3), The Corrupted signal
obviously receives a low score, but the interpolated audiogram, Baseline, considerably improves
the score. ORACLEBO matches/improves user satisfaction with Qd = 5 and Qf = 25 queries. With
fewer Qf of 5 and 15, ORACLEBO could not outperform Baseline as the search space R4000 had
not been sufficiently sampled.

The audiogram Baseline performs quite well because human hearing is reasonably flat within oc-
taves, hence, interpolation is adequate. We thus explore another application that injects more complex
audio distortions, e.g., a cheap music speaker. We again emulate this distortion by deliberately
corrupting the audio with a random filter h. Fig 3(a)-Random plots the results for the same 3 users.
ORACLEBO improves the satisfaction scores even with Qf = 15 queries, and achieves the maximum
with Qf = 20. The audio demos at various stages of the optimization are made available at [1].

6 Follow-up Work and Conclusion
This paper formulates a new problem in BBO where an Oracle can reveal information about the
minimizer, h∗. This problem maps to real-world human-centric applications. After its empirical
treatment in this paper, we believe there is promising follow-up work such as, (1) an analytical
treatment on convergence for the hybrid Qf + Qd querying. (2) other applications that are fit for
hybrid querying. We hope ORACLEBO serves as a starter in solving problems along these directions.
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A Appendix

A.1 Background Material

A.1.1 Bayesian Optimization

Bayesian optimization [8] broadly consists of the following two modules:

(1) Surrogate model: A family of functions that serve as candidates for the unknown objective
function. The functions are commonly drawn from a Gaussian process generated by Gaus-
sian Process Regression (GPR). This essentially means that GPR generates a Gaussian
posterior distribution of the likely values function f can take at any point of interest h.

(2) Acquisition function: A sampling strategy that prescribes the point at which f should be
observed next. The GPR posterior model is used to evaluate the function at new points h′,
and one is picked that maximizes a desired metric. This new point h′ when observed will
maximally improve the GPR posterior.

We review GPR next, followed by a popular acquisition function called “Expected Improvement”.

A.1.2 Gaussian Process Regression (GPR)

Non-parametric model: Gaussian processes [27] are helpful for black-box optimization because
they provide a non-parametric mechanism to generate a surrogate for the unknown function f . Given
a set of samples X = {h1, h2, . . . , hK} at which the function f has been observed, i.e., we know
F = {f(h1), f(h2), . . . , f(hK)}, we can identify an infinite number of candidate functions that
match the observed function values. Figure 4 shows an example function f in 1-dimensional space.

Figure 4: A GPR Posterior: The black “plus" symbols mark all the observed points. The dashed-blue line is
the true f , and the red line is the estimated f̂ (the mean of the posterior). The light blue shaded area marks the
variance.

Function distribution & Kernel: GPR generates the surrogate model by defining a Gaussian
distribution over these infinite candidate functions. Given the set of observations (X ,F), the mean µ
of the distribution is the most likely surrogate of the function f . The covariance K is a kernel that
dictates the smoothness (or shape) of the candidate functions and must be chosen based on domain
knowledge of f . One commonly used kernel is the ARD (Automatic Relevance Determination)
power exponential kernel:

k(h, h′) = a0 exp−
1

2
(h− h′)TΣ−1(h− h′) (5)

where, a0 and Σ = diagi(σi) are the kernel parameters.

Prior & Posterior: Before any observations, the distribution defined by K and µ = 0 forms the
prior distribution. Given a set of observations (X ,F), the prior is updated to form the posterior
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distribution over the candidate functions. Figure 4 shows the distribution of candidates and the mean
surrogate model of an example f . With more observations, the current posterior serves as the prior,
and the new posterior updates from the new observations. Eqn. 6 models the function f with the
posterior generated by GPR.

P (F|X ) ∼ N (F|µ,K) (6)

where, µ = {µ(h1), µ(h2), . . . , µ(hK)} and Kij=k(hi, hj), k represents a kernel function.

Predictions: To make predictions F̂ = f(X̂ ) at new points X̂ , GPR uses the current posterior
P (F|X ) to define the joint distribution of F and F̂ , P (F , F̂ |X , X̂ ) in Eqn. 7.

[
F
F̂

]
∼ N

([
µ(X )

µ(X̂ )

]
,

[
K K̂

K̂T ˆ̂
K

])
(7)

where, K = k(X ,X ), K̂ = k(X , X̂ ), ˆ̂
K = k(X̂ , X̂ ) and (µ(X ), µ(X̂ )) = 0.

The conditional distribution and hence prediction of F̂ is derived from the joint distribution shown in
Eqn. 8. The proof and explanations of all the above are clearly presented in [27]).

P (F̂ |F ,X , X̂ ) ∼ N (K̂TK−1F ,
ˆ̂
K− K̂TK−1K̂) (8)

A.1.3 Acquisition function

In each GPR iteration, a new h must be acquired such that the observed f(h) maximally improves
the posterior from the previous iteration. This requires a judicious sampling strategy that optimizes
an improvement metric. “Expected Improvement” (EI) is one such popular metric.

Expected Improvement: Given previous observations D = (X ,F), let f∗ = minx∈X f(x) be the
current function minimum (i.e., the minimum observed till now). If a new observation f(h) is made
at h, then the minimum now will be one of these:

• f(h) if f(h) ≤ f∗

• f∗ if f(h) ≥ f∗

Hence, the improvement from observing f at h is
[f∗ − f(h)]+, where, a+ = max(a, 0).

We want to choose h that maximizes this improvement. However, f(h) is unknown until the
observation is made, so we choose h that maximizes the expectation of this improvement. Expected
Improvement is thus defined as:

EI(h|X ,F) = E[[f∗ − f(h)]+|X ,F ] (9)
where, E[·|X ,F ] is the expectation taken on the GPR posterior distribution given observations
(X ,F). This posterior is as specified in Eqn. 6. Thus, the next sample to make an observation at is:

h = argmax
hi∈RN

EI(hi|X ,F) (10)

A.1.4 High dimensional Bayesian Optimization

Curse of dimensionality: The objective function in Eqn. 1 typically lies in a high dimensional space
(i.e., h ∈ H ⊆ RN , N ≥ 500). Bayesian optimization works well for functions of < 20 dimensions
[8]; with more dimensions, the search space H increases exponentially, and finding the minimum
with few evaluations becomes untenable. One approach to reducing the number of queries is to exploit
the sparsity inherent in most real-world functions.

We assume our function in Eqn. 1 is sparse, i.e., there is a low-dimensional space that compactly
describes f , so f has “low effective dimensions". We review ALEBO [14], a class of methods
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that exploit sparsity to create a low-dimensional embedding space using random projections. Our
proposed idea builds on top of ALEBO, but we are actually agnostic of any specific sparsity method.

A.1.5 Linear Embedding using Random Projections

Random Projections: Given a function f : RN → R with effective dimension df , ALEBO’s linear
embedding algorithm uses random projections to transform f to a lower dimensional embedding
space. This transformation must guarantee that the minimum h∗ from high dimensional space H gets
transformed to its corresponding minimum y∗ in low dimensional embedding space. The right side
of Figure 1 aims to visualize this transformation. Without satisfying this property, optimization in
low-dimensions is not possible.

The random embedding is defined by an embedding matrix B ∈ Rd×N that transforms f into
its lower dimensional equivalent fB(y) = f(h) = f(B†y), where B† is the pseudo-inverse of B.
Bayesian optimization of fB(y) is performed in the lower dimensional space Rd.

Clipping to H: When f is optimized over a compact subset H ⊆ RN , We cannot evaluate f outside
H. One approach to prevent any embedding point y from being projected outside of H is to "clip"
such points to H. This is done by projecting the points back into H, i.e., fB(y) = f(pH(B†y))
where, pH : RN → RN is the clipping projection. However, this clipping to H causes nonlinear
distortions.

Instead, constraining the optimization to only points in Y that do not project outside H, i.e., B†y ∈ H,
prevents distortions; however, it also reduces the probability of the embedding containing the optimum
h∗. ALEBO remedies this by choosing d > df (an embedding space larger than f ’s effective
dimensions). Then, the acquisition function evaluated in the constrained embedding space is given as:

argmax
y∈Rd

EI(y)

s.t. − 1 ≤ B†y ≤ 1
(11)

where the constraint −1 ≤ B†y ≤ 1 are linear and form a polytope.

Modifications to the Kernel: ARD kernels in H (shown in Eqn. 5) do not translate to a product
kernel in embedding Y , since each dimension in H is independent (diagonal matrix Σ in Eqn. 5).
However, moving along one dimension in embedding is similar to moving across all dimensions of H.
To combat this, a Mahalanobis Kernel is used in the embedding. Any two points in the embedding
are projected up to RN (B†) and then projected down to H (A), fB(y) = f(B†y) = f(AB†y) and
Cov[fB(y), fB(y′)] = exp{−(y − y′)TΓ(y − y′)} where Γ = (ATB†)TΣ(ATB†) is a symmetric
positive definite matrix. This finally ensures correctness in sparsity-based Bayesian Optimization
(BO).

A.2 Synthetic Functions Experiment Details

In this section, we discuss the experiment setup for ORACLEBO’s application to synthetic satisfaction
functions and other BO benchmark functions. Since we have knowledge of the minimizer h∗, we
simulate dimension querying Qd at queried dimensions L i.e., h∗[j], j ∈ L.

The two sets of objective functions to be optimized are:

(1) Satisfaction Functions: We generated functions [2] that have a discontinuous staircase
structure to mimic the user satisfaction scoring function. The staircase structure is due to the
fact that a user’s audio perception might not change for a range of filters so the score remains
the same and might change with sudden jumps for some filter choices, thus leading to a flat
shape in some regions and steep curve in other regions. The staircase structure results in the
functions having infinite local minima, infinite global minima, and zero gradient regions.
These functions are naturally not suited for gradient-based optimization techniques. In our
work, we use three such perception functions denoted as P1, P2, and P3. The functions are
defined in Eqns 12,13,14.
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Figure 5: Satisfaction Function P1: Discontinuous staircase structure, containing infinite zero gradient regions.

(2) Benchmark Functions: We test ORACLEBO on commonly used benchmark functions
in Bayesian optimization research: BRANIN, HARTMANN6, and ROSENBROCK [25]. These
functions are denoted as B,H , and R. The functions are defined in Eqns 15,16,17.

fP1(h) =

N∑
i

(⌊|hi + 0.5|⌋)2 (12)

where, −100 ≤ hi ≤ 100, i = 1, 2, . . . , N , hi is filter h along dimension i. Infinite global minima at
fmin(h

∗) = 0, and the minimizers are −0.5 ≤ h∗
i < 0.5 (i.e.,) h∗

i ∈ [−0.5, 0.5), i = 1, 2, . . . , N

fP2(h) =

N∑
i

(⌊|hi|⌋) (13)

where, −100 ≤ hi ≤ 100, i = 1, 2, . . . , N . Infinite global minima at fmin(h
∗) = 0, and the

minimizers are −1 < h∗
i < 1 (i.e.,) h∗

i ∈ (−1, 1), i = 1, 2, . . . , N

fP3(h) =

N∑
i

(⌊(hi)
2⌋) (14)

where, −100 ≤ hi ≤ 100, i = 1, 2, . . . , N . Infinite global minima at fmin(h
∗) = 0, and the

minimizers are −1 < h∗
i < 1 (i.e.,) h∗

i ∈ (−1, 1), i = 1, 2, . . . , N

fB(h) = a(h2 − bx2
1 + cx1 − r)2 + s(1− t)cos(x1) + s (15)

where, hi ∈ [−5, 10], h2 ∈ [0, 15], a = 1, b = 5.1/(4π2), c = 5/π, r = 6, s = 10, t =
1/(8π).. Three global minima at fmin(h

∗) = 0.397887, and the minimizers are h∗ =
(−π, 12.275), (π, 2.275), (9.42478, 2.475)

fH(h) =

4∑
i

αi exp−
6∑
j

(Aij(hj − Pij)
2 (16)

where, hi ∈ (0, 1), i = 1, 2 . . . , 6, α = (1, 1.2, 3, 3.2)T , A =

 10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

,

P =

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

. One global minimum at fmin(h
∗) =

−3.32237, and the minimizer is h∗ = (0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573).

fR(h) =

N−1∑
i

(100(hi+1 − h2
i )

2 + (hi − 1)2) (17)

where, hi ∈ [−5, 10], i = 1, 2 . . . , N . One global minimum at fmin(h
∗) = 0, and the minimizer is

h∗
i = 1, i = 1, 2 . . . , N .
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A.2.1 Evaluation Parameters

In our experiments, we optimize the functions for:

- f_evals = 100 function evaluations
- r_init = 5 initial random samples after which the acquisition sampling begins
- N = 2000,H ⊆ RN is the high-dimensional space
- Rd, d = 4 is embedding space for P1, P2, P3, Branin and Rosenbrock and is Rd, d = 6 for

Hartmann6 . Branin, Rosenbrock, and Hartmann6 have effective dimensionality de = 2, 4, 6,
respectively.

- Different numbers of Qd queries L = 0, 1, 3, 5, 15, 30 are used and L = 0 implies no Qd

queries are available and ORACLEBO functions as just ALEBO
- L Qd Top and Random dimensions for Qd queries are considered.
- q = 5 acquisition samples are used in Batch Acquisition Function in Eqns 2,3
- In the Dimension Matched Sampler, we use variance σ = 1: Gj = N (µ = h∗[j], σ = 1)

for each dimension j ∈ L in Eqn 4
- For Branin, we use the minimizer h∗ = (π, 2.275) to generate dimension Qd queries and

for perception functions P1, P2, P3 we use the minimizer h∗
i = 0, i = 1, 2, . . . , N . For

Hartmann6 and Rosenbrock we use their unique minimizers
- We run 10 random runs of each experiment

A.2.2 Synthetic Experiment Additional Results

In this section, we continue our discussion of results for synthetic functions like staircase satisfaction
functions and benchmark functions.

Which L out of N queries? Given L = 15 queries, say, different subsets of N dimensions can
be chosen. Let us denote this subset as L. If f(h) hardly varies along the dimensions included in
L, then L contributes little to estimating the satisfaction function. Figure 6 shows ORACLEBO’s
regret on two different L. Note that because the objective function f is synthesized, the variation
of f against any dimension y is known. In LTop, we select the L dimensions of largest variances;
LRand denotes the randomly selected dimensions from {1, N}. Results show that LTop achieves
lower regret (median and variance) compared to LRand. Thus, in real applications, it helps to choose
L dimensions that are likely to influence the user’s satisfaction.

L=5 L=15 L=30 L=5 L=15 L=30

0

1e3

2e3

R
eg

re
t Top Rand

Figure 6: Distribution of ORACLEBO’s regret on different Qd subsets LTop and LRand.

Various objective functions: Figure 7 summarizes regret across a range of objective functions,
including three different staircase functions (denoted P1 to P3) and 3 standard benchmark functions.
Results confirm that ORACLEBO’s performance improves until L = 15 dimension queries.

Hyperparameter Selection: Parameters in BAF and DMS modules include: N , dimension of the
filter; d, dimension of the embedding; q, number of candidates BAF outputs, and σ, the dimensional
variance in DMS.

Table 1 tabulates our analysis of ORACLEBO’s performance over these parameters. N =
{500, 2000}, d = 4, q = 5, σ = 1 yields the minimum regret for satisfaction function P1 with
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P1 P2 P3 Branin Hartmann Rosenbrock
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Figure 7: Different functions f(h) with varying Qd queries.

Qd = 5, Qf = 100. We pick N = 2000 to highlight ORACLEBO’s performance in high-dimensional
spaces. Thus, our choice of using these parameters for our experiments is informed by the analysis.

N d (q, σ)
(5,1) (2,0.2) (2,10) (7,0.2) (7,10)

500
4 83 445 316 1459 1459
10 148 166 237 760 883
20 477 551 609 1201 1255

2000
4 90 242 514 543 628
10 2166 2331 2753 2331 2753
20 2677 2764 3125 2764 3125

4000
4 513 606 1268 1268 1268
10 1532 1627 2154 4006 5278
20 1749 1993 3332 10213 10213

Table 1: Hyperparameter analysis on regret for P1.

A.3 Audio Personalization Experiment Details

Queries: The detailed definitions of queries on audio personalization are as follows:

1. Query1 (Qd): A clinical audiogram test: Conventional hearing aids tuning involves
playing pure-tone frequencies to the patient and capturing their hearing response. For each
frequency j played with increasing amplitude (-10 dB to 120 dB), the user presses a button
when they can hear the frequency. Doing this measurement for several frequencies gives the
user’s hearing loss profile h∗[j]j = 0, 1, . . . , N .
In practice, this is measured for N = 7 frequencies
(500Hz, 1KHz, 2KHz, 3KHz, 4KHz, 6KHz, 8KHz). This is too coarse a res-
olution to capture the exact hearing loss frequency response of a user as typically
N ≥ 500.
So we cannot exploit these measurements (Qd) alone to determine the personalizing filter
h∗. However, these measurements do provide some information about the minimizer h∗.
The audiogram test thus acts as the dimension query in ORACLEBO.

2. Query2 (Qf ): Satisfaction function sampling: We can choose filters hj from the space of
all filters H ⊆ RN , apply it to any audio played to the user, and get their score f(hj). The
user satisfaction function also has underlying sparsity because human hearing and hence
audio perception is not the same across all frequencies [3]. Under the perception function
constraints, the audio personalization problem is well suited for sparsity-based Bayesian
Optimization techniques like ORACLEBO.
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Baselines:

In Audio clinics, a user’s audiogram is obtained through a coarse interpolation of these Qd pure tone
measurements. We use this coarse audiogram as our Baseline

Data Collection:

We recruit 3 volunteers of 1 male(s) and 2 female(s) without hearing loss. To simulate hearing loss or
distortion due to cheap speakers, We use two different corrupting filters b1:2.

In the case of hearing loss, we use the publicly available hearing loss profiles in the NHANES [5]
database as the corrupting filter b1. For random distortions (cheap speakers), we generate a random
corrupting filter b2.

The audiogram and random distorting filter measurements are available at finite frequencies
(500Hz, 1KHz, 2KHz, 3KHz, 4KHz, 6KHz, 8KHz) and thus act as the Qd. We have at most
7 Qd queries we can utilize.

A sample speech clip a is filtered with the distorting filter b1 or b2 to obtain the corrupted clip This
audio is what is heard by a person with hearing loss or as heard from a cheap speaker, r = b1:2 ∗ a.

The goal of the audio personalization task is to apply different filter queries Qf , hj to the clip r to
construct the user satisfaction function and optimize it to find ĥ∗, the personal filter. This filter when
applied to the audio clip should make the resulting audio sound similar to the original uncorrupted
speech clip (i.e.) r ∗ ĥ∗ = â ≈ a.

The personalization filter should counteract the distortion caused by b1 or b2.

A.4 Related Work

To the best of our knowledge, ORACLEBO is the first work that combines two different types of
queries, Qf and Qd, for Bayesian Optimization. We also believe such hybrid querying has not
been applied in audio personalization. The closest work in the application context is [24] where
authors used conventional BO to search for the best-rated cookie recipe at Google. We believe more
applications can benefit and the burden of querying users can become practical with dimension
querying (Qd). Of course, BO has been extensively used to solve complex problems that do not have
humans in the loop. These include material science [26], medicine [18], hyperparameter tuning in
neural networks [23], etc.

ORACLEBO inherits sparsity-based BO frameworks based on low-dimensional embeddings. These
papers use linear random projections to map from high to low-dimensional spaces [21][29][4][14].
Authors of [10][15] use a Gaussian Process to simultaneously learn the model and the embedding.
Non-linear embeddings are learnt using Variation Autoencoders in [11][16][15]. ORACLEBO is
agnostic to these algorithms and we expect their advantages to reflect in our performance as well.
On a similar note, various papers modify the kernel [12][9][17][28] to restrict the candidate function
choices [19], reflecting additional structure in the objective function. LineBO [13] optimizes the
acquisition function along one-dimensional lines. TuRBO [7] employs trust regions around the
current minimizer. [20], [6] use sparsity creating prior. The performance of ORACLEBO can be
boosted with such kernel manipulations.
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