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ABSTRACT

This paper finds that actions of the teeth, namely tapping and slid-
ing, produce vibrations in the jaw and skull. These vibrations are
strong enough to propagate to the edge of the face and produce vi-
bratory signals at an earphone. By re-tasking the earphone speaker
as an input transducer - a software modification in the sound card
— we are able to sense teeth-related gestures across various mod-
els of ear/headphones. In fact, by analyzing the signals at the two
earphones, we show the feasibility of also localizing teeth gestures,
resulting in a human-to-machine interface. Challenges range from
coping with weak signals, distortions due to different teeth composi-
tions, lack of timing resolution, spectral dispersion, etc. We address
these problems with a sequence of sensing techniques, resulting in
the ability to detect 6 distinct gestures in real-time. Results from 18
volunteers exhibit robustness, even though our system — EarSense —
does not depend on per-user training. Importantly, EarSense also
remains robust in the presence of concurrent user activities, like
walking, nodding, cooking and cycling. Our ongoing work is fo-
cused on detecting teeth gestures even while music is being played
in the earphone; once that problem is solved, we believe EarSense
could be even more compelling.
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1 INTRODUCTION

This paper explores the possibility of sensing teeth-and-jaw motion
using commercial off-the-shelf earphones. The key idea stems from
the fact that teeth produce vibrations when they tap, slide, or grind
against each other. These vibrations travel through the jaw and
skull bones as surface vibrations, reaching the outer ear where the
earphone is located (Figure 1). The earphone speaker’s diaphragm
responds to these vibrations, and a weak electric signal travels back
through the audio jack to the sound card. Re-purposing the sound
card allows us to extract these vibration signals.

Figure 1: Vibrations generated by the teeth traverse as sur-
face vibrations through the maxilla, mandible and zygoma
bones, to ultimately arrive at the end of the jaw, near the ear.

In this paper, we present EarSense, a new approach to using
earphones as a teeth activity sensor. EarSense accepts the extracted
vibration signals as input and infers teeth activity such as teeth-
tapping locations, sliding directions, grinding, etc. This enables a
new form of contact-less user interface where a user can scroll,
click, type, pause, etc. simply using his/her teeth. Unlike other
contact-less user interfaces like hand or body gestures, eye trackers,
or voice activated interfaces, EarSense is non-invasive, secure, and
maintains the privacy of the user, i.e., the command cannot be heard
or seen by anyone. Section 2 will envision the landscape of potential
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applications, however, this paper focuses on laying the foundations
around teeth-related vibration signals and inferences from them.

While there has been substantial interest around facial sensing
in the medical, wearable and HCI communities [6, 9, 12, 16, 21,
25, 28], EarSense differs from past work in 3 key aspects. First, the
signals we capture are very weak, distorted and polluted by various
other sound and vibration signals. Second, unlike past work that
have designed dedicated hardware and invasive devices for such
forms of sensing, we capture the signal using everyday off-the-shelf
earphones that people wear normally. Finally, our approach focuses
on measuring and modeling signal propagation through teeth and
jaw, improving our understanding of the underlying model in order
to generalize our system. Past work, to the extent we have found,
have leaned heavily on directly applying learning and classification
of specific tasks, derived from a focused use-case or application
[3,9, 22, 28]. We believe this paper will shed light on the properties
and behavior of vibrations inside the mouth, while also showing
that even off-the-shelf earphones can derive useful information
from them.

We define our problem as follows: given two signal streams
sensed by the left and right earphones, our goal is to reliably iden-
tify as many teeth related gestures. We characterize a gesture as an
(action, location) tuple, meaning that a particular teeth action is
being performed at a specific location. For example, actions could
be tapping or sliding, while locations could be front teeth, left
teeth, top teeth, etc. Hence, a user may perform a ( downward slide,
middle-teeth ) to scroll down her mobile phone screen, while a (
tap, right teeth ) could be a right click. Gestures can be defined at
will, as long as users can perform these gestures without difficulty.
Clearly, the finer the granularity at which we recognize actions and
locations, the more gestures we can support.

To achieve reliable gesture recognition, we leverage 3 opportu-
nities in extracting such ( action, location ) primitives. First, teeth
actions exhibit diversity in their spectral properties because each
action produces distinct physical forces and timing. Second, we can
localize the actions using the relative time gap at which vibrations
arrive at the left and right ear. This time gap is a function of the
distance the vibration has traveled through the jaw/skull bone,
which is in turn a function of the location. Third, we can leverage
the structure of human mouth and teeth to further constraint the
location of the action and improve the reliability of our detection.

Translating the above ideas into a real-world practical system
requires addressing several challenges. (1) The distances inside the
mouth are small, resulting in tiny time differences that are hard
to estimate with the earphone’s low sampling frequencies. This is
particularly problematic for high frequency vibrations that travel
fast, making them harder to distinguish.!. (2) The wide variation
across individuals makes it difficult to adopt global models. To
avoid per-user training, we need to process and identify patterns
in the signal that can be robustly used for gesture identification. (3)
Finally, human motion, such as walking, also produce vibrations in
the body; these vibrations partly contaminate the earphone signals,

!Unlike RF signals or sound signals in the air, the speed of surface vibrations in the
body is frequency dependent and is faster for higher frequencies [37].
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polluting teeth gestures. The earphones speakers themselves also
inject distortions due to various hardware artifacts. Any gesture
recognition must cope with such interference.

This paper develops a fusion of geometric modeling and signal
processing techniques to systematically address the above chal-
lenges. We implement EarSense on a simple platform of earphones
connected to a sound card (we test 5 different headphones and 3
sound cards, including the most popular Realtek cards). Only the
software of the sound cards is modified so that the speaker’s vi-
brations are extracted as a regular .wav file. The modifications are
minimal (<5 lines of code).

We evaluated EarSense on 18 volunteers (including an 8 year
old child) and collected teeth-gesture data; no prior calibrations
or trainings were performed. Our findings reveal that 6 gestures
can be decoded with consistent robustness at >90% accuracy. We
also found that users are not able to perform more than 8 gestures
with their teeth, and are most comfortable with 6-7 gestures, imply-
ing that EarSense is close to the limits of viability. For a potential
tooth-brushing application (where volunteers brushed their teeth),
EarSense was able to localize the brush at 7 regions of the lower
and upper teeth.

In sum, our contributions can be summarized as follows.

e We develop EarSense, a relatively new sensing modality that
uses off-the-self earphones to sense teeth-activity.

e We propose techniques to identify, model, and localize ges-
tures from teeth vibration signals; we cope with interference
from other activities, and generalize to different users with-
out the need for per-user training.

e We implement and evaluate EarSense on 18 users and 2 ex-
ample applications: a private user interface for sending com-
mands and a tooth-brushing monitor. We have not tackled
the problem of teeth sensing while the earphone is playing
audio sounds; we leave this to future work.

We begin the rest of the paper with a discussion on potential
applications for EarSense followed by basic measurements, system
design, evaluation, and future work.

2 APPLICATIONS

This section envisions a host of possible applications that can
build on top of EarSense. While each application would bring unique
challenges and opportunities, this paper is focused on enabling the
core technical capability. Application specific customization would
emerge with time.

B Accessibility

Google’s “Switch Access” for Android devices [1] is a growing plat-
form for accessibility needs. Google’s core idea is to use a separate
device consisting of several large push-buttons. In accessibility
mode, the Android screen sequentially highlights the click-able
icons and the user is expected to press a button when the desired
icon is highlighted (see video here [13]). EarSense can eliminate this
additional “Switch” device by re-purposing the earphone. Teeth
gestures should also offer faster/flexible navigation options to those
who can perform them. Importantly, far more patients face chal-
lenges with moving their hands and fingers, compared to their teeth.



EarSense: Earphones as a Teeth Activity Sensor

Hence, EarSense is likely to find broader applicability than finger-
controlled “Switch Access”. For instance, navigation joy-sticks in
wheel chairs could be combined with a EarSense-like interface.

m Health Sensing: Seizures and Dental Disorders

An oncoming seizure or epilepsy can often be preceded by symp-
toms like teeth chattering, repetitive lip smacking, a certain body
odor, etc. [7]. Today, such patients are often accompanied by dogs
that are capable of smelling odors that patients are known to emit
30 — 45 minutes before the seizure [5]. EarSense’s ability to sense
teeth-chatter could open new ways of early seizure detection, valu-
able especially when alert dogs are unavailable.

Various dental disorders, such as malocclusion, oclussion reha-
bilitation, and certain periodontal diseases require doctors to record
the patient’s teeth actions and vibrations. With EarSense, such visits
to the clinic can be avoided. Perhaps everyday dental monitoring
— such as proper chewing, brushing, and flossing habits — could
also be facilitated by EarSense. The need to monitor such everyday
behavior may be necessary in some cases, particularly for kids.

m Hands-free Interfaces

In hospitals, doctors are often unable to perform basic touch-screen
gestures since their gloves need to be removed first. Workers in
factories, construction sites, and warehouses often have their hands
occupied, thereby unable to perform simple machine operations;
they may have to break the work flow to, say, move a lever left
to right. Many of these cases are noisy sites, forcing workers to
wear headphones or earmuffs. We believe EarSense can plug various
“holes” in streamlining such work-flows.

m Two Factor Authentication (TFA)

Surveys show that users still avoid TFA where possible (<10% and
<20% of Gmail and Microsoft Office 365 users, respectively, use TFA
[27, 30]). The main reason is the burden of finding the phone, un-
locking the screen, and typing one time passwords (OTPs) retrieved
from either SMS or in-application code generators. EarSense could
reduce this burden by treating the earphone as the input interface
to the phone. Instead of screen gestures on the phone, the user
could perform teeth gestures that the earphone would forward to
the paired smartphone. The rest of the TFA process can remain as
is; the smartphone could forward the gesture to the authentication
server, allowing the user to log-in. Figure 2 is a screenshot from a
demo of TFA with EarSense — the web browser on the left shows
the OTP on the screen; the right panel shows the user’s face, while
he is entering the OTP through teeth-gestures.

Finally, unlocking phones with PIN numbers (or swiping ges-
tures) are susceptible to over-the-shoulder eavesdroppers. EarSense
protects from such attacks since decoding teeth motions inside the
mouth raises the bar for attacks. Thus, in conclusion, we envision
EarSense as the supporting technology for a number of emerging
applications. The exact productization process would need more
customization and engineering.

3 BASICS AND MEASUREMENTS

We now lay out the basic properties, assumptions, and measure-
ments to set up the research context for this paper.
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Figure 2: Screenshot on the left shows a web application pre-
senting an OTP as part of a Two Factor Authentication (TFA)
process. The right panel shows the user entering the OTP via
teeth gestures.

(1) Defining the teeth gestures

When humans move their mouth/jaw, it is the lower jaw that moves.
There are indeed 3 degrees of freedom (up/down, left/right, and
in/out), but each of these motions is quite heavily restricted (es-
pecially left/right and in/out). This limits the number of gestures
possible. Moreover, humans have limited control on their teeth, i.e.,
a user cannot tap only their upper and lower canine without the
adjacent teeth touching each other. This implies that teeth gestures
would have to be coarse-grained, especially if users must perform
them without difficulty.

From user studies with 18 volunteers, we observed that only a
few are able to perform 9 gestures as shown in Table 1, while the
rest preferred 6-7. This scopes out our teeth gesture set and the 3
main gesture categories — namely Taps L/M/R, Slides L/R, and Slides
U/D - are explained visually in Figure 3. Observe that Taps L/M/R
and slides L/R are relatively easy to understand. Slide Up indicates
that the lower teeth move upward while grazing the upper teeth,
and Down is the vice versa. For both the sliding actions, multiple
upper and lower teeth can touch each other at the same time. While
performing experiments with volunteers, we demonstrated the
teeth gestures using our hands, where fingers denoted the teeth.

Figure 3: Visualizing teeth gestures: (a) taps left/middle
/right (b) slide: left (c) slide: right and (d) slide: up

(2) Visualizing EarSense signals from earphones

Fig. 4 shows the time domain signal picked up by the left and right
earphones when a user is tapping the left canine teeth, and then
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Taps L/M/R | 1. Tap extreme left side upper and lower teeth
. Tap left side upper and lower teeth

. Tap middle upper and lower teeth

. Tap right side upper and lower teeth

1
2
3
4
5. Tap extreme right side upper and lower teeth
6
7
8

Slide L/R . Slide teeth from left to right
. Slide teeth from right to left
. Slide front lower teeth upwards

9. Slide front lower teeth downwards

Slide U/D

Table 1: Nine teeth gestures users could perform, however
some users found it difficult to separate between (1,2) and
(4,5), resulting in 7 “comfortable” gestures.

sliding them from left to right. High level observations are that
tapping produces impulse-like signals in the time domain, while
sliding generates weak but extended vibrations. Fig. 5 shows the fre-
quency domain representations of the same tap and slide gestures.
Unsurprisingly, the taps are far wider in bandwidth. Additionally,
the signal travels through different teeth, and since their chemical
compositions are quite different, they impact the frequencies differ-
ently, resulting in substantial spectral variations between the left
and right ear. For slides, however, the action produces a narrow
band signal. The effect of different teeth on this narrow band is far
more uniform.

1 T T T T T
Left Channel, SI
Right Channel, Sr

0.5F Tap Slide

Amplitude
o

o
o
T
.

3
Samples 10t

Figure 4: Signals at left and right channels of headphone for
tapping left canines and sliding left to right.
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Figure 5: (a) Teeth tap/strike has a larger bandwidth while
(b) sliding of teeth has narrower bandwidth (and more uni-
formity) across the left and right ear.

(3) Surface or air vibrations?

We intend to understand if the earphone speaker’s diaphragm is
vibrating due to solid-surface vibrations, or due to air vibrations
travelling through the internal air-cavities, in the mouth and the ear,
or through external air channel around the face. Fig. 6 compares the
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two cases by performing teeth gestures when the user is wearing
the earphone, and then performing the same gestures when the
earphone is not in contact with the human ear (i.e., there is a small
air-gap between the earphone and the ear). Evidently, the signal
is almost at the noise floor when the earphone is not in contact,
proving that received signals are indeed surface vibrations.

0.1 B

o 0.05 On ear Off ear 1
E

E= )

£

< -0.05 d

-0.1 d

0 0.5 1 1.5 2

Samples x10%

Figure 6: A small air gap between the earphone and the ear
prevents sensing of the teeth vibrations.

Importantly, Fig. 7 shows the case when the user is speaking,
and the earphone is worn on the ear. This suggests that human
speech induces surface vibrations in the jaw and skull, which is also
picked up by the earphone’s speaker. This aligns with theories and
experiments in literature [38]. Typically, for earphones/headphones
to capture sounds over the air, the diaphragm has to be very close
to the source.

(4) Can other activities interfere with EarSense?

Fig. 8 shows the spectrogram when a user was asked to perform
various activities (e.g., nodding, walking, listening to ambient mu-
sic, speaking, etc.) while wearing the earphone. Evidently, teeth
gestures and self-speech exhibit far stronger energy than any of
the other activities. Walking also produces some signals primarily
because every strike of the foot on the floor creates vibrations that
propagate through the human skeleton [31]. This vibration can
interfere with the teeth signal. Importantly, since the foot-strike
is also an impulse-like signal, it has a wide frequency footprint
(evident from the graph). For other activities, including loud music,
there is no perceptible signal above the noise floor.

%103
5
(0]
E |
2 0y
= {|
£
Self-Speech
-10 ‘ : : : ‘
0 0.5 1 15 2 2.5 3
Samples x10%

Figure 7: Human speech produces surface vibrations inside
the human mouth, which is also picked up by the earphone
speaker’s diaphragm.

(5) Effect of earphone wearing positions

Every time the user wears the earphone, the position and orienta-
tion of the device may not be identical. If the teeth gesture signal
is sensitive to this position/orientation, then EarSense may not be
viable for practical applications. Fig. 9 shows the consistency of the
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Figure 8: Spectrum of signals captured for different activities, starting from quiet, head nodding, walking, music from home

speaker, self-speech, teeth slide, teeth tap.

detected signal when the same teeth gesture is performed across 5
different wearing positions. In this experiment, 5 different people
were asked to mount the earphone on a single user, producing nat-
ural diversity across the wearing positions. The raw measurements
are still reasonably consistent.

0.1 1

Amplitude

0 500 1000 1500 2000
Samples

Figure 9: Teeth gesture signals are consistent across wearing
positions, a requisite for robustness.

4 SYSTEM OVERVIEW

Fig. 10 presents the overall flow of EarSense’s processing pipeline.
EarSense accepts two channels of vibration signals (as measured by
stereo headphones) as input and returns a {action, location) pair
as output. The input signals are first checked for teeth gestures (to
separate from other activities such as walking, eating, or speaking).
Once confirmed, the next step is to classify whether the gesture is
tap or slide. This is not difficult since the spectral properties exhibit
a distinct difference.

If a tap is detected, then time difference of arrival (TDoA) tech-
niques are employed first to trilaterate the source location. In gen-
eral, TDoA is a promising indicator because the ear that is closer
to the tap location receives the vibra-acoustic signal earlier. But at
times, i.e., in 35% of our sample space, users are unable to ensure
that only the suggested teeth locations are tapped. There are softer
interactions at other locations of jaws that corrupt the clean TDoA
of captured signals. Hence, we use additional properties of spectral
dispersion, and a third opportunity that we call “cheek waves” to
boost the reliability of tap localization.

Now, if a slide is detected, a delay profile is derived using sliding
windows and is matched to estimate if the slide was from left-
to-right or the other way. Along similar lines, the presence of an

impulsive surface wave followed by narrow-band body waves are
used to classify between upward and downward slides.

As detailed in Section 5, we jointly exploit properties of the
generated signals (using spatio-temporal analysis), basics of waves
propagation, and geometric constraints in the motion of jaws to
detect 7 teeth gestures in the form of < action, location > pairs.
Together, they form the building blocks for a teeth-based user in-
terface, enabling different applications as discussed in Section 2.

5 SYSTEM DESIGN

This section expands on the individual modules outlined in Section
4. Let us denote the system inputs as S; and S, corresponding to
the two signals recorded at the left and right headphones.

5.1 Teeth Gesture or Not

The function of this module is to separate teeth gestures from all
other interference and noise. As shown earlier, the headphone’s
diaphragm is almost behaving like a “conduction microphone”,
meaning that it only picks up surface vibrations (and hardly any
air-borne signals). Through extensive testing, we observed that 3
physical motions register surface vibrations at the headphone: (1)
self-speech, (2) walking, and (3) eating. Since EarSense assumes
that the user would not gesture while eating, our task is to reliably
recognize self-speech and walking. This entails 2 steps, namely pre-
processing (to identify segments of activity) followed by activity
recognition. Figure 11 shows the sequence.

Pre-Processing: We begin by computing the envelope Enu(-)
of the input signal. A sliding window on the envelope calculates
the energy of the n’ window at the left and right channels as:

kn+N
Eijp(n)= " Env*(Syy.(0) (1)
i=kn
where N is the size of each window; k is the step size for sliding the
window. An activity is suspected only if both E,(n) and E;(n) are
at least double the noise floor. Then, if such energy is observed for
longer than 7y = 0.25s — the minimum duration of any walking
or eating action — then the whole high energy time segment is
extracted for activity classification. We denote this segment as
S, and S;.

Detecting Self-speech: Self-speech signals are generally easy
to identify. The opportunity lies in the distinctive base + harmonic
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Teeth

Gesture
2

Headphone

Channels Delay

Profiling

S5
“1 1. TDoA Left
2. Cheek wave Middle
3. Dispersion Right
Up/Down Impulse Upward
Verification Downward

Delay Profile Left-to-Right
Left/Right Matching Right-to-Left

Figure 10: EarSense architecture: A .wav file consisting of 2 vibro-acoustic signals are accepted as input and teeth gestures (one

of seven candidates) are presented as an output.

frequency patterns produced by a human voice. Specifically, the
base frequency of human speech is within [80,255] Hz [20]. If
the vibrations are indeed speech, the peak in (S/r and S/l) should
be within the range of [80,255] Hz, which in turn gives us the
base frequency. Knowing the base frequency, we can compute the
harmonics (since they are integer multiples of the base); thus, we
calculate the energy sum, s, of the base and the first harmonic. The
ratio of s to the energy of the entire segment E reveals the presence
of speech signals. Non-speech signals do not exhibit such harmonic
patterns in the low frequency bands.

Pre-
processing

Segment
Signal

Figure 11: Flow of operations for teeth-gesture or not.

Detecting Walking: Human walk comprises of leg swings and
heel strikes on the ground. Swinging does not induce vibrations
at the headphone diaphragm, but heel strikes produce clear spikes.
Though both leg and tooth induce impulse-like vibrations in the
skeleton, tooth strikes involve enamel which is the hardest sub-
stance in human body (hardness of 5 on Mohs scale of hardness
[8]). Steel achieves a value of 4 on the same scale [35]. On the other
hand, leg strikes involve much softer surfaces, i.e., soft shoe cushion.
Additionally, body acts as a filter to the traversing vibrations as well.
Hence these two signals end up falling in quite different frequency
buckets. We observe leg strikes concentrated in sub 100 Hz range,
while teeth strike can go all the way up to 2 kHz. We also observe
that sliding teeth also generates signals with substantial energy in
frequencies above 100 Hz. These permit energy-based classification,
especially in the 100-2000 Hz band. Specifically, we calculate ratio
of the energy in the [100, 2000]Hz band, to the entire signal energy.
This ratio reliably separates the human walking activity.

5.2 Teeth Tap or Slide

Once teeth gesture is detected, our goal is to separate the 2 types
of gestures. The opportunity arises from the spectral properties of
tap and slides. As shown in Figure 5, tap is an impulse-like force in
the time domain, exhibiting a sharp and abrupt change in first and
second orders of derivatives. On the other hand, sliding generates
smoother and narrow-band signals of relatively longer duration.

Fig. 12 shows the sequence of operations. Unfortunately, Fourier
analysis is not reliable in such cases due to sharp changes and
potential discontinuities. Continuous wavelet transform (CWT) has
been reported to be far more robust [10, 32, 36, 39]. CWT coeflicients
are larger near abrupt local changes in the signal, hence helps in
identifying transients. We use Wavelet transformation over S’, and
S; to capture the energy span with high spatio-temporal resolution.
Fig. 13 shows CWT for an example tap on left canine teeth, and an
example slide from left to right.

Wavelet
Transform

Energy in
upper f band

600
50 .
0 002 004 006 008 0 02 04
Seconds Seconds

Hz
Power

Figure 13: (a) Wavelet transform of hitting left canine. Such
strikes/taps have energy in wider band and lower frequen-
cies arrive later in time. (b) Slides from left to right exhibit
different properties than taps.

The energy in frequencies > 200Hz, and the signal duration, are
together analyzed to classify between taps and slides. A segment
is declared a tap if the energy in the upper frequency band is on
the higher side of the decision boundary at either the left or the
right earphone, and signal duration is shorter than a threshold.
This threshold is defined by computing the max of the tap-duration,
and adding the variance to it, as a safety factor. This proves highly
robust.

5.3 Tap Localization

Once a tap is identified, we intend to localize it in the granularity of
left, middle and right. Time difference of arrival (TDoA) should be a
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promising indicator for detecting the position of the tap, i.e., for the
tap in Fig. 14, the user’s left ear should receive a delayed copy of

the right ear’s recordings. TDoA can be written as %,d“), where d;

is the distance of strike from center of the teeth. As such, sounds
produced during occlusion (i.e., the closing of the lower jaw onto
the upper jaw) travels through hard and soft tissues as a mixture
of compressive, shear, and transverse waves at speeds up to 1000
m/s [11]. But, unlike localization on uniform surfaces, TDoA inside
the mouth faces issues from heterogeneous chemical compositions
even among symmetric teeth [18], location of the tongue, and other
physiological factors. This precludes TDoA from being the only
feature for robust localization.

Figure 14: TDoA at left and right channels of a headphone
is used for estimation of a strike at any location, S, on jaw
with reference to the centre, C.

To this end, we extract 3 other features from the signals, S,r and
S;, and perform a voting to classify tap location. These features are:

e Measure of acoustic dispersion
o CWT filter bands based TDoA
e Dominance of the cheek waves

Acoustic Dispersion: When teeth strike each other at any lo-
cation, surface acoustic waves (SAW) are generated. A solid and
hard surface like teeth is a dispersive medium and transmits SAW
of different frequencies at different speeds, V(f), [17, 37]. The prop-
agation speed depends on the physical properties of the material
(density, Young’s modulus, thickness and Poisson ratio). Now, for
a wide band signal generated from teeth taps, different frequency
components arrive at the headphone’s diaphragm at different times.
This phenomenon of dispersion leads to asymmetric signals in the
channels (left and right) of earphone if ds. is non-zero. As the tap
location approaches towards either ear, ds. increases, the recorded
signals witness greater asymmetry. The degree of asymmetry is a
measure of spectral dispersion, hence a promising feature for tap
localization.

Fig 15 shows the dispersion, 41 < A2... < A, in tap signal as
obtained at one of the channels. We propose to exploit dispersion
and its dependence on ds. using offsets between corresponding
zero-crossing times at left, S;, and right, S;, channels for estimat-
ing the location of the tap. First, the instance of the burst of high
frequency waves is calculated. Then all temporal instances, TI;,
of zero amplitudes are extracted. Let Z;(Z,) be the zero-crossing
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instances for S}(S;) and represented as:
Z; « [Th, Ty, Tls, ..., TIN]. (2)
The zero-crossing difference (ZcD) is defined as:
ZcD «— [Tl = Tr1,Tlp = Try, Tl = Trs, ..., TIN = Try].  (3)

If ZcD has majority of positive elements, left channel witnesses
comparatively late arrivals of frequencies, it would indicate towards
the tap on the right side of the teeth. The sum of first k elements
in ZcD, should be a function of distance of separation, ds.. If the
>, is above a (+)ve threshold, right tap is reported; below a (-)ve
threshold, left tap is reported; and within € around 0, then middle tap
is reported. We acknowledge that the individual differences across
left and right teeth might lead to different numbers of crests and
zero-crossing instances. We create ZcD of a length corresponding to
the minimum of the two sides. These would have created challenges
if we attempted a higher resolution of recognition.

Amplitude

0,04 | | | | | | |
1.3 226 339 452 565 678 113
ms
Figure 15: Tap signal: dispersion is clearly visible, high fre-
quency signal comes earlier than lower ones.

Wavelet Transform based TDoA: Recall that frequencies travel
at unequal speeds through solids, leading to different TDoAs [37];
this pollutes cross-correlation based TDoA approaches. To tackle
this problem, we first filter the signal into narrow frequency bands
and then compute TDoA for each band. Due to geometric con-
straints of the jaw, the distance of strike, 2ds., is typically low
(=~ 4cm) for both left and right strikes. Since high frequencies have
larger V(f), they arrive on almost same time at both sides of the
ear and are used to detect the start of the taps. These can be seen
as sharp dips (or oscillations) in the time domain. Hence, higher
frequency bands do not lend themselves well to TDoA. We note
that the time gap between the arrival of lower frequencies is much
more, due to separation in the distance, than those corresponding
to the initial burst of higher frequencies. EarSense finds early arrival
of energy in CWT bands below 300 Hz for both S;, and S;. Further,
it finds time difference between left and right channels for each of
the bands and determines tap location like the ZcD-based method.

Cheek Waves: When performing a tap, just before the teeth
strike each other, cheek muscles around the end of the jaw contracts
and generates pulses. Fig 17 shows the weak cheek wave signals
from the earphones. Though the contractions happen near both
ears, it is dominant on the side of the tap. Although cheek waves
are weak, they offer a valuable hint for localization.

We begin by identifying the teeth-strike window in both S; and S'l.
Then a small window of t ms (before the start of teeth strike) is
extracted out and analyzed for the presence of cheek waves. A con-
fidence score is generated corresponding to differences in energy
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Figure 16: Slide type and localization: Left/Right or Up/Down.
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Figure 17: Cheek waves as an opportunity.

(between the left and right channels). Specifically, if the difference
is near zero (i.e., within twice of the noise floor), then we declare
the strike location as “middle”. If the difference is greater (i.e., (+)ve),
then we localize the tap as “left”, and vice versa when the difference
is (-)ve and its power is less than 2x of the noise floor.

Finally, the 3 parameters of ZcD, TDoA, and cheek waves energy,
are together used to localize tap, via majority voting.

5.4 Teeth Slide Classification

Classifying between left, right, up, and down teeth-slides is rooted
in temporal analysis of the relative delays between two earphone
channels. Fig. 16 illustrates the overview of the operations. At a
high level, left and right slides are classified based on the variation
of delay differences over time. Upward and downward slides have
similar delay profiles since they occur in the middle of teeth, hence,
an impulse detection method is used (to be explained soon).

Delay Profiling: Horizontal or Vertical: A slide can be seg-
mented into a sequence of windows at both channels. Each window
gives a hint about the location of teeth interaction, i.e., slide is
actually a time series of < action, location > pairs, through the
TDoA of signals on the two channels. We call the series of TDoA
over different segments as the delay profile. By examining the delay
profile, we show it is possible to tell horizontal and vertical slides
apart.

Specifically, sliding teeth produces friction between the upper
and lower jaw, which in turn generates body waves. The acoustic

waves emanating from slides are comparatively narrow band, re-
stricted around 50 — 200 Hz. The signals received by left and right
channels are the source signal convoluted with the left and right
channels of teeth, thus are delayed based on the swipe location.
Dispersion is not evident here, and as can be seen in Fig. 18, they
are correlated and temporally shifted, and thus delay can be directly
calculated using cross-correlation.

0.01

T
Left Channel, S,
e Right Channel, Sr

0.005

Amplitude

-0.005

-0.01

I I I I I
0 45.3 90.6 135.9 181.2 226.5 271.8
ms

Figure 18: Slide signal: dispersion is not evident, delay pro-
file can be obtained by cross-correlation.

A moving window calculates a sequence of delays between two
channels, creating a profile. Here delay profile, ATgj; 4., is an array
corresponding to delay calculated between S; and S; for each of

the overlapping moving windows and whose i*" element is given
as:
ATspiq6(0) = argmax(corr(S; ;(1: end), S'r i(k:end)). (4
h ) .

Here S; ; and Sy, ; are given as (i —1)win/2 : (i + 1)win/2 samples of
S; and Sy. The geometric constraints of the jaw present opportuni-
ties for classifying teeth slides. During a vertical slide, the teeth in
contact do not change much. Hence AT;; 4. is nearly constant and
close to 0. Biases are possible because of potential deformations in
some jaw anatomies, but this would be a constant. For horizontal
slide, the contact part of the teeth will change greatly, leading to
a non-constant delay profile, Thus, by looking at the variance of
delay profile, if stable (i.e., nearly constant), we will report a vertical
slide, otherwise report a horizontal slide.

If Vertical — Upward or Downward: We observe that up and
down slides vary in the existence of dispersion at the start (i.e.,
when the signal arrives). Upward slides are impulsive and show
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more dispersive characteristics at the start. This is identified from
the spread of the spectrum, CWT coefficients, and ZcD in the first
window.

If Horizontal — Leftward or Rightward: ATj; 4, obtained
from the previous step, is compared against the expected set of
delay templates (see Fig. 19).

200 -
Left-to-Right Upward
Right-to-Left Downward

5 10 15 20
Segments

Figure 19: Relative delays for different slide directions

Ideally, a left-to-right slide has a decreasing trend because as the
slide progresses, the left incisors slide first, followed by the middle,
and then the right ones (observe that only the lower jaw is sliding
while the upper jaw remains static). Hence, the delay is maximally
(+)ve at the start and decreases to maximally (-)ve towards the
end. Opposite trends are observed for right-to-left slide in Fig. 19.
We note that not all people have very uniform teeth. Hence, local
aberrations are observed, but on average the extrapolation of this
trend generalizes well. With this end-to-end system design in place,
we now move to the evaluation of EarSense.

6 IMPLEMENTATION

We have implemented EarSense on 5 different headphone/earphone
models: Audio-Technica ATH-M30X, Sony MDRZX110, Bose solo3,
Samsung EHS64, and RockPapa. The headphone was connected
through the audio jack to 3 different sound cards: Realtek 892,
Realtek 888, and Realtek 885. Based on preliminary analysis, we
observed that the supra-aural headphones also capture the vibra-
tions and can infer features like path delays, dispersion, and delay
profiles. Fig. 20 shows an example of our simple experimental setup.
The overall implementation has 3 main components:

(A) Re-purposing the Sound Card: Our goal is to convert
speakers into a sensor for teeth vibrations and turn the sound card
into a receiver of such signals. For this, we leverage the fact that
most audio sound cards, like Realtek, provide an API to program
audio ports for dual functionality [14, 34]. This API can be exploited
to make output audio jack (socket) of the headphones/earphones
function as an input.

The API provides access to audio pins that can be re-tasked. Fig-
ure 21 shows the architecture of the sound cards and the locations
of the pins. Pins 14 and 15 (stereo L and R at PORT-E) are actually
Analog I/Os and can be re-tasked as per user specifications. We
reconfigure pins in software using a set of commands from the
Audio kernel space. This provides an opportunity to dynamically
re-configure the audio jacks to receive the vibration signals from
the speaker.
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Figure 21: ALSA 892 configuration and re-tasking flow.

(B) Extracting and Processing the Signals: Our script first
detects the presence of a device in the jack using an API function
(acpid) [23]. Upon detection, it re-tasks the port using a suitable
API (hda_verb) corresponding to the jack. If music or a call are not
playing, our script ensures that headphones remain in the receiver
mode, samples the signals, and exports to MATLAB. If an output
stream is triggered, it toggles to transmit mode.

(C) Data Collection: We invited 18 volunteers to evaluate our
system and asked them to perform 7 gestures: Taps (L, M and R)
and slides (L to R, R to L, Up and Down) (more details in section 3).
14 participants were asked to perform each gesture 10 times. To
cope with motion interference, 4 participants were deliberately
asked to perform each of the 7 gestures while also performing other
activities such as walking, cooking, cycling, walking, head-nodding,
etc. The collected results were then fed to the EarSense algorithm.

7 RESULTS

7.1 Detecting Teeth Activity

The first step in EarSense’s pipeline is to detect teeth activity and
distinguish it from other vibrations caused by walking or talking.
Physical activity and speech, however, present as different signals
levels at the speakers. Hence, we require separate thresholds to
distinguish speech and walking from teeth activity. As a result, our
system first distinguishes teeth activity from speaking and then
from walking. For each case, we find the threshold that achieves
the highest accuracy of detection. We then vary this threshold to
test its stability.

Figure 22 shows the ROC curve of the teeth-or-not classifier. We
maintain 94.0% true positives while false positives are still less than
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10%. Figure 23 shows two bars representing the detection accuracy
of teeth activity against speech and walking. The x-axis shows the
normalized threshold where for each case, we normalize by the
optimal threshold achieved. We vary the threshold by +25% from
the optimal and record the accuracy. The figure shows that the
peak accuracy is 93.3% in the case of speech and 96.8% in the case
of walking. If we choose the optimal threshold in both cases, we
will achieve a final overall tooth activity identification accuracy of
90.2%.
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Figure 22: ROC curve for detecting teeth activity.
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Figure 23: Sensitivity of the accuracy for distinguishing
speech and walking signals from teeth activity.

7.2 Distinguishing Tap vs. Slide

Once teeth activity has been detected, the next step is to identify
whether it is a “Tap” or a “Slide”. Figure 24 shows the accuracy
for each class, across different locations. The results are best for
the middle tap, 97%, primarily because the intensity of vibration
signals are stronger from this middle area. For slides, the accuracy
of detecting left, right, upward or downward (U/Dgj;4.) slides are
more than 90%. If we increase granularity, from 6 to 7 gestures, and
look at the accuracy of detecting the upward and downward slides
individually, the accuracy drops to around 73%. This is because
it is hard for early users to slide upward or downward without
tapping their teeth. However, we observed that as users gained
more experience, they were less likely to tap their teeth while
sliding, which improved accuracy.

7.3 Gesture Localization

After EarSense decides whether the teeth activity is a “Tap” or
“Slide”, it must localize the gesture. Recall that for “Tap” there are
three locations: left, right and middle. For “Slide” there are four
locations: up, down, left, right. For localizing the “Tap”, we compare
three techniques:
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Figure 24: Accuracy of distinguishing Tap vs. Slide.

e ZcD: Zero Crossing Difference

e TDoA: Time Difference of Arrival

e EarSense: Joint Localization with “Cheek” Waves

Fig. 25 shows the accuracy of each of the three schemes for

different locations. EarSense outperforms both Zc¢D and TDoA,
which shows that using “Cheek” waves improves the accuracy of
EarSense’s gesture localization. EarSense’s accuracy is above 93%
and uniform across locations whereas ZcD and TDoA achieve
higher accuracy for the middle tap location and their accuracy for
left and right tap is below 80%.
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Figure 25: Tap localization using different methods.

Figures 26 and 27 show the accuracy of localizing the gestures
against each gesture-location for each of the 14 users. The figures
show that EarSense can accurately localize taps, right and left slides,
and upward or downward slides with an accuracy larger than 90%
and 80% and 85%, respectively. More importantly, the figures show
that the accuracy is uniform across users. This shows EarSense is
not over-fitting to some users and generalizes well without per-user

training.
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Figure 26: Slide localization accuracy across 14 users.

7.4 Overall Gesture Recognition

Fig. 28(a) shows the overall classification results across all 7 ges-
tures and all users. Evidently, the accuracy exceeds 90% except
when discriminating between up-down and down-up slides. The
reduction in accuracy is partly a deficiency of our inference tech-
nique, but also stems from users adjusting their teeth (up/down)
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Figure 27: Tap localization accuracy across 14 users.

to perform the gestures correctly. In light of this, Fig. 28(b) shows
the same overall results, but with 6 gestures now (i.e., combining
up-down and down-up slides into a single U/Dy;;4,). Naturally,
results improve appreciably with a minimum of 88%. We believe
this is an acceptable trade-off, i.e., sacrificing one gesture for a 17%
improvement in worst-case classification.
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Figure 28: Confusion matrix across all users for (a) 7 gestures
and (b) 6 gestures.

Finally, Fig. 29 shows the distribution of 6-gesture recognition
accuracy, demonstrating the robustness of EarSense. Statistically,
EarSense achieves a median accuracy of 0.98 and a 90th percentile
accuracy of 0.895 across all users and gestures. This shows that
EarSense is able to accurately and reliably recognize gestures.

7.5 Impact of Mobile Settings

We analyze whether other user-activities (e.g., walking, cycling,
nodding) produce vibrations in some parts of the body that perco-
late into the earphone and interfere EarSense’s gesture recognition.
Fig. 30 plots the accuracy for each of these activities, on a per-
gesture basis. The performance is best for teeth taps, namely 85%
for walking, and 90-93% for cooking, cycling, and nodding. This is
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Figure 29: CDF of accuracy for all cases with 6 gestures.

because taps exhibit stronger SNR compared to slides. Walking suf-
fers slightly because the vibration from the feet striking the ground
pollutes the signal. Other activities produce weaker interference,
but since teeth-slides produce weak SNRs, the benefits get offset.
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Figure 30: Gesture recognition accuracy against concurrent
activities in mobile settings.

7.6 Tooth Brushing

We also evaluated the performance of EarSense for brushing teeth.
Specifically, we localize the position of the tooth-brush to one of
seven locations uniformly distributed on the jaw:

R3/L3: Right/Left Molars (Extreme right/left)
R2/L2: Right/Left Premolars

R1/L1: Right/Left Canines

M: Middle Incisors

Users were requested to use an electronic tooth brush to brush each
position for 2 secs in random order. Unlike non-electric tooth brush,
the hand does not oscillate rapidly while brushing. This negates
the possibility of capturing unwanted interference. Also, the body
acts as a filter to the vibrations of the toothbrush traveling through
the skeleton, i.e., the arms-to-neck-to-ear channel has muscles and
skin which largely attenuate the signal. Figure 31 shows the overall
confusion matrix for 7 locations. The average localization accuracy
is 89%. Most confusions happen with nearby locations. Only < 3%
experiments show location error of two positions apart which is
likely due to the different size and structure of the teeth across
different humans.

8 LIMITATIONS AND DISCUSSION
We discuss a few open issues in our current version of EarSense.
Sensing while playing music: The current limitation with

EarSense is that it cannot be used while music is being played in
the earphone. This is because the speaker’s diaphragm will anyway
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Figure 31: Confusion matrix of 7 tooth brush locations when
the user is brushing with an electronic tooth-brush.

vibrate due to the music; the teeth vibrations would need to be
isolated from the aggregate signal (a problem similar to RF full
duplex cancellation). We leave this problem to future work, however,
we note that startups like Nura [29] are solving similar problems to
estimate the ear impulse response (so music can be customized to
users). Moreover, it may be viable to make a head gesture to pause
the music and switch the earphone to a receiver mode. Once control
commands are given through EarSense, the music can resume.

Wireless earphones: Jack re-tasking was possible with wired
earphones, however, may not be easy with wireless earbuds. We
hope our research motivates earable-designers to provide such
capabilities as APIs in upcoming releases. Companies are already
exploring such ideas (e.g., Braggi’s Dash can accept gestures such as
a tap on cheeks [4]). We believe that a firmware update can enable
earphone apps to toggle between modes, allowing for EarSense-like
systems.

Leveraging In-ear microphones: We used the earphone’s speaker

(instead of the microphone) to sense vibrations. This is because the
microphones typically face outwards to listen to the user’s voice
or for noise cancellation. New earbuds are emerging with in-ear
microphones [33], i.e., microphones at the inner end of the earbud,
designed for ear-sensing and better noise cancellation. The data
from in-ear microphones are still not available (e.g., Samsung’s
APK is only for internal use). As such APKs become public, the
microphone can be immediately useful for EarSense-like systems.

Longitudinal studies across larger populations: We under-
stand that teeth compositions change over time; that can affect the
gesture recognition quality. Also, 18 users may not be adequate
to capture all variations across the human population. Clearly, a
longer-term user-focused commitment is necessary to push EarSense
towards deployment.

9 RELATED WORK

Related work around teeth and oral sensing can be classified under
2 umbrellas: (a) invasive and (b) non-invasive.

Invasive: Multiple projects have been studying the design and
usability of invasive systems for hand-free gestures recognition.
TongueBoard [22] from Google discusses the design of an invasive
oral interface for recognizing non-vocalized speech. It uses the
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SmartPalate system consisting of an array of 124 capacitive touch
sensors embedded in an oral mouthpiece, and is able to classify
between 15 words/2 gestures. In a different work, a clench inter-
face has been designed using an in-mouth pressure sensor [40] to
facilitate biting based input interfaces. Similarly, [9] discusses the
design of an intra-oral input interface. Clearly, these devices are
critical for specific medical applications where carrying/implanting
these devices are well justified. With EarSense, the motivation is to
piggyback oral sensing on regular ear devices, and thereby being
amenable to the masses.

Non-Invasive: TYTH [28] discusses a creative tongue-teeth
localization approach using dedicated hardware. It senses changes
in spatial features of neuro-muscular signals, EEG, ECG, and skin
surface deformation (SKD) as the tongue moves around the mouth.
SelfSync [19] exploits the presence of two or more smart devices
for joint quantification of gestures. The gesture set is limited to 3;
moreover, a user may not carry multiple devices. [3] is the closest
to our work but differs by requiring a dedicated bone-conduction
microphone; the gestures are restricted only to “clicks”; and relies on
per-user training. [2] uses barometers inside earphones to capture
changes in air-pressure inside the ear due to different facial gestures.
[26] designs a dedicated circuit to adopt intercom like feature with
COTS earphones.

In another line of work, [15] modifies a toothbrush by attaching a
magnet to the handle. The orientation and motion of the toothbrush
is captured by the magnetic sensor in the wristwatch, which aids in
recognizing tooth-brushing gestures. Similarly, wrist-worn inertial
sensors have been used to monitor brushing patterns [24]. Clearly,
EarSense makes an attempt to achieve better gesture dictionaries
with COTS (wired) earphones.

10 CONCLUSION

We demonstrate the feasibility of sensing teeth-gestures using off-
the-shelf earphones. The intuition is that teeth taps and slides
produce surface vibrations in the jaws, that ultimately reach the
ears and create oscillations in the earphone speaker’s diaphragm. By
recording these vibrations in the sound card, and processing them
via lightweight techniques, we are able to detect teeth-gestures.
We reliably localize 6 — 7 gestures under the assumption that the
earphone is not playing any sound while the gestures are being
performed. The natural next step is to extract such vibrations even
when music is being played through the earphones - a topic of our
ongoing research.
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