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ABSTRACT
This paper shows that inertial measurement units (IMUs)
inside earphones o�er a clear advantage in counting the
number of steps a user has walked. While step-count has
been extensively studied in the mobile computing commu-
nity, there is wide consensus that false positives are common.
The main reason for false positives is due to limb and de-
vice motions producing the same periodic bounce as the
human walk. However, when IMUs are at the ear, we �nd
that many of the lower-body motions are naturally “�ltered
out”, i.e., these noisy motions do not propagate all the way
up to the ear. Hence, the earphone IMU detects a bounce
produced only from walking. While head movements can
still pollute this bouncing signal, we develop methods to
alleviate the problem. Results show 95% step-count accuracy
even in the most di�cult test case – very slow walk – where
smartphone and �tbit-like systems falter. Importantly, our
system STEAR is robust to changes in walking patterns and
scales well across di�erent users. Additionally, we demon-
strate how STEAR also bring opportunities for e�ective jump
analysis, often important for exercises and injury-related
rehabilitation.

1 INTRODUCTION
Step-counting has been an important primitive for the mo-
bile/wearable industry, including smartphones, smartwatches,
�tbits, arm-bands, etc. Applications have used step-count to
derive statistics like calorie burnt, exercise tracking, activity
loggers, and even gait analysis for post-injury rehabilitation.
Yet, there is wide agreement that step-count is still not accu-
rate; random actions of the leg and hand lead to over/under
estimates. For instance, shaking one’s leg while seated can in-
crement the step counter, as could playing drums, ping-pong,
or video games.

The problem of accurate step-counting with IMUs is non-
trivial. Brie�y, the human body bounces as a user walks and
this bounce manifests into a periodic sinusoidal signal in the
IMU’s accelerometer. Step count is essentially the frequency
(or the number of peaks) of this sinusoidal signal. In reality,
however, various other motions of the human body (and the

device) get added to the IMU measurements, polluting the
sinusoid, or injecting spurious periodicity even when the
user is not walking. Hence, the technical challenge lies in
continuously identifying and �ltering out these pollutions,
while robustly adapting to the user’s variations in walking
patterns. For instance, a user may walk di�erently during
a stroll on a beach, during a walk to the o�ce, while walk-
ing down the stairs, or when tipsy from an evening party.
Quickly recognizing these unseen patterns, and yet, �lter-
ing out false positives, is a di�cult problem. Finally, the
IMU itself is cheap, hence noisy, adding an extra layer of
complexity to signal processing.

With IMUs becoming popular in modern earphones, a natural
question is: does motion tracking in general, and step counting
in particular, bene�t from IMUs placed at the ear? This paper
�nds that while tradeo�s exist, the net outcome is favorable.
In particular, the bounce of the human body during a walk
gets re�ected at the earphone’s IMU, but the random motions
(of the leg and hand) get �ltered out to a large extent. Said
di�erently, the sinusoid from human walking emerges as
a cleaner signal when measured from the ear. Of course,
the head motions can still pollute the sinusoid, however,
the head’s movements are generally more constrained, and
mostly rotations (as opposed to linear motions). All in all, the
net IMU signal lends itself well to signal processing, resulting
in robust step-count estimation.

Of course, translating the core opportunity into a robust
system entails 2 key challenges. (1) The orientation of the
earphone can vary as the user moves her head. If this ori-
entation is not tracked continuously, the IMU data will not
project correctly to the global reference frame (explained
later), ultimately derailing the step counting system. (2) The
bouncing motion varies over di�erent sessions, and even
within a session, the signal shape can change. Standard peak
detector techniques falter because spurious spikes or �uctu-
ations causes peak counts to get incremented. Filtering the
signal around walking frequencies is di�cult since the walk-
ing frequency is not known a priori. Any attempts to predict
this frequency makes the system less robust to variations.



In coping with these challenges, our system STEAR adopts
simple but scalable methods. For orientation, we continu-
ously integrate the gyroscope to compute the 3D projection
matrix from the local to the global reference frame. Since hu-
man head motion is only rotations, such a gyroscope based
scheme is su�cient. Once the 3D orientation is known, the
accelerometer data is projected on to the global frame. Then,
instead of peak detection, we apply a dynamic time warping
(DTW) based scheme to cope with signal shape variations,
and potential spurious �uctuations. Of course, some degree
of pre and post processing is performed on the signal to
ultimately extract the step count of the user.

We implement STEAR on Nokia’s ESense earbuds [4], embed-
ded with an IMU. The IMU samples at the highest supported
sampling rate of 100Hz. We ask 7 users to walk in normal
modes. We also ask users to perform activities such as jumps
and skips. Our evaluation reveals the following:
• STEAR measures very slow steps with ≥ 95% accuracy,
typically a hard problem on phones and watches.

• Earphones are as good, if not better than smartphones in
calculating steps in other modes of walking.

• Earphones measure jumping characteristics better using
unique properties like a trail of zero-acceleration while a
person is in free fall. Smartphones are subjected to noise due
to relative jitters and friction with pants and bags, ultimately
a�ecting the jump analysis.

In sum, the contribution of this paper may be summarized as
follows: we show a natural opportunity that human walking
motion is better re�ected in earphones, and we design a system
to harness this opportunity, ultimately resulting in a robust
step-counter and jump detection method for earphones.

The rest of the paper expands on this core contribution, start-
ing with some ground measurements, followed by system
design, evaluation, and conclusion.

2 GROUND MEASUREMENTS
This paper builds on the premise that IMUs on earphones are
less impacted by noise and arbitrary limb motions compared
to IMUs in smartphones, wrist-bands, and smartwatches.
Figure 1 visually illustrates the motion trajectory of the head
during a walk – this trajectory mimics a sinusoid. To verify
whether a real IMU measures a sinusoid as well, we record
IMU acceleration from a earbud and a phone during a normal
walk. Their time and frequency representations are shown
in Figure 2(a)-2(d). Evidently, earbuds exhibit much cleaner
measurements in comparison to a relatively spread-out and
noisy spectrum in phone’s IMUs. The frequency spectrum
also shows a clearer peak for ear IMUs compared to a mix of
comparably strong frequencies for phones.

Figure 1: Sinusoidal motion of a head during walk
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Figure 2: Acceleration (a) as recorded from phone (b) spec-
trum at phone (c) as recorded from earable (d) spectrum at
earable.

Next, we study the IMU’s signal-to-noise ratio (SNR) across
di�erent body locations and activities. SNR here is de�ned in
terms of the ratio of signal power during a period of activity
to the power of the noise during a time segment before the
activity. Figure 4 shows the results. The participant walked
slowly, normally, and ran for the third session; he wore a
earbud on the ear, and carried a smartphone in hand and
another in the pocket. Evidently, earbuds exhibit an advan-
tage over the phone in the studied scenarios. These form the
basis for a robust physio-analytics framework, developed in
the rest of the paper.

Walking Pa�ern Variations
Figure 5(a) and (b) plot the time domain IMU data from multi-
ple walking sessions – the former is from smartphones while
the latter is from earbuds. The multiple lines in each graph
are from di�erent users. Clearly, smartphones show more
variations, suggesting extraneous pollutions from di�erent
parts of the lower body. In contrast, earbuds are consistent,
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Figure 3: System Architecture for Step Counting
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Figure 4: SNR at Esense and phone for di�erent activities

again due to the e�ects of natural �ltering. This further en-
dorses the opportunity of robust step counting with earable
IMUs.
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Figure 5: Comparing templates of steps for di�erent users
(a) IMU in phone placed in pocket, (b) IMU in earbud.

3 STEAR: SYSTEM DESIGN
STEAR has two modules: (1) a step counter that remains
always ON, and (2) an exercise analytics module that is acti-
vated on-demand. We �rst describe the pipeline for counting
steps, followed by methods for basic exercise, speci�cally
jump analysis. Both these are simple and lightweight, lend-
ing themselves well to on-device, real-time processing, even
on a small earable platform.

Step Count
Figure 3 shows the processing pipeline for the proposed step
counter, composed of the following modules:

� Pre-Processings: Signal pre-processing mainly includes
cancelling the bias in the gyroscope. Bias in gyroscope read-
ings gets magni�ed after integration and a�ects the projec-
tion matrix to be discussed next. STEAR identi�es when the
device is static1, and during this static window, computes
the average of the gyroscope readings. If the readings are
only due to (zero-mean) noise, the average should tend to
zero. However, if the gyroscope exhibits a bias, it should be
revealed here as a DC value. We subtract this average value
over subsequent measurements, thereby compensating the
bias. Clearly, larger the static window, better is the estimate,
and we use many minutes for averaging.

� Global Projection: IMU sensors report readings in its
local reference frame. However, to understand motion trajec-
tories like the one in Figure 1, the data needs to be projected
to the global framework. This is because as the device moves,
the <X ,Y ,Z> coordinates are constantly changing/rotating,
and the IMU measures the acceleration with respect to its
instantaneous <X ,Y ,Z> axes. To explain with an analogy, an
IMU is like an airplane passenger who is able to tell that the
plane is accelerating “forward” or taking a “left” turn (i.e.,
in her instantaneous <X ,Y ,Z> axes), but it is hard for the
passenger to track the plane’s trajectory on the global world
map. To track global movement, the IMU’s orientation needs
to be constantly rotated to keep the plane horizontal and
moving North, and the acceleration needs to be measured in

1This is not di�cult and is performed by checking if the magnitude of the
acceleration is same as gravity.
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this �xed global orientation. Said di�erently, the acceleration
needs to be projected to this global 3D orientation.

STEAR performs this projection by integrating gyroscope
data to estimate global orientation (a standard process in lit-
erature). Since gyroscopes drift, we reset it at static instants.
As before, static instants are detected when the earphone’s
acceleration equals gravity and gyroscope measures zero
readings (or just noise).

Let’s denote the local accelerometer reading at static points
as vector alocal = [a1,a2,a3]. We �nd a rotation matrix R,
which rotates alocal to aдlobal = [0, 0,д]. Note that R is not
unique, because we did not specify the horizontal rotation.
However, this will not cause a problem because we only care
about vertical movements. After that, for each gyroscope
reading at time ti , we constantly apply delta rotation matrix
∆Ri , representing the delta rotation from time ti to ti+1, to
the original rotation matrix R to give the projection for each
time stamp afterwards.

� Filtering: Although earable IMUs o�er better SNR, �lter-
ing can still be useful. Given that pollutions from some head
motions are possible, we can still eliminate them since they
are at low frequencies. We apply both low and high pass
�lter (using moving averages).

� Step Segmentation and DTW matching: Traditional
smartphone-based step counting uses peak detection on the
accelerometer data. Given the diversity of gaits and smart-
phone placements, it is hard to separate peaks from walking
steps, and those from (unrelated) limb or device movements.
This causes errors in today’s counters. With head motion, on
the other hand, the peaks are cleaner and thereby lends itself
to matching against a walking template. Of course, there is no
global template since humans walks with di�erent step lengths,
frequencies, and sways. Nonetheless, these variations can be
modeled as a compression or expansion of a simple walking
template. This protect the step-counter from detecting spu-
rious peaks and noisy false positives, while being robust to
variations in walking patterns. To this end, the measured
acceleration is �rst normalized based on the amplitude, and
then matched with the template using a dynamic time warp-
ing (DTW) algorithm. DTW accommodates the variations
of walks while detecting the peaks quite accurately. Impor-
tantly, no training is necessary.

� Anomaly (Step or Not) Filter and Counter: We set a
threshold on the DTW score to determine whether a po-
tential step is an actual step or not. The threshold is set
as two-thirds the standard deviation of all the DTW scores
from a recent period of walking. This is of course a heuristic,
however, results show that it adapts to changes in walking

patterns. If one intends to reduce false positives (but can
tolerate false negatives), the threshold can be increased.

Exercise Analytics: Jump Measurement
We focus on only one instance of exercise analysis: jumping.
How high a user can jump is an important metric for various
health checks [6]. Earphone IMUs o�er an opportunity since
it is �xed at the ear and does not jiggle/jitter like a phone in
a pocket. Even smartwatches show some vibration since it
is not tightly worn on the wrist, and the user would move
her hands during the jump.

We propose to measure jump-height by observing that the
accelerometer reads ZERO when the user is o� the ground
(see Figure 6). This is because the accelerometer actually
measures the reactive force on the body, which is 0 after the
feet leave the ground. This yields the exact start and end
time of the jump, and applying basic physics and kinematics
during this time window, we expect to calculate the height.
This avoids the need to do double integrate the accelerometer
(which results in a poor estimate due to noise integration).

0 50 100 200 250

Samples

-1

0

1

2

3

4

A
c
c
e
le

ra
ti
o
n
, 
g

Lifting up In air Landing

Figure 6: Jumping analysis: 3 stages. Accelerometer reading
is 0 when the user is in the air.

� Jump Height Calculation: We detect jumping by set-
ting a threshold ϵ , slightly above zero. When the accelerom-
eter reading is < ϵ , we believe the user is in air. Denoting t as
the total time in air, and the rise/fall movement is symmetric
in time (i.e., t/2), we calculate the jump height simply as
h = 1/8дt2, where д is known acceleration due to gravity.

4 IMPLEMENTATION AND EVALUATION
STEAR is built using onboard IMU of an Esense [4] earbud
from Nokia. The IMU data stream, sampled at 100 Hz, is
recorded through an Android application, nRF Connect by
Nordic Semiconductor [7], and piped to MATLAB. The smart-
phone baseline result is obtained from OnePlus 3T smart-
phones running 3 most popular step counting apps, down-
loaded from the Android Play Store.
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Figure 7: (a) Acceleration spectrum across walkingmodes. (b) Time domain, �ltered, signals for walkingmodes for same user.

Step Count
Four sets of experiments were performed with the partici-
pants wearing Esense on the ear and carrying smartphones
in their pockets and hands. Participants were requested to
walk in 4 modes: (a) very slow, (b) slow, (c) normal and (d)
run. Figure 7(a) shows that the earbud captures the shift in
the peak frequency with increasing walking speed. Figure
7(b) also visualizes the time-domain signals, showing the
variations possible for the same person.

� Very slow walk: It is crucial to be able to track very slow
steps for assisting medical recovery in patients, older adults,
and for slow walks inside houses or in beaches. Many prior
work [2]-[5] report that traditional equipment and applica-
tions are inaccurate for adults walking at a speed of <0.9
m/s. Figure 8 veri�es this result – smartphone miss most of
the instances of slow walks since the peaks are buried under
noise and random limb motions (since the peak amplitudes
are weak for slow walks). With STEAR, due to of high SNR
and nearly sinusoidal observations at earbuds, we are able
to achieve higher accuracy in step-count. Figure 8 shows
the comparison. We tracked 3 users moving very slowly and
taking small steps, emulating walking old adult or patients.
STEAR achieves accuracy >97% – 49 out of 50 steps – while
smartphones under-counts as 5/50.

� Slow walk: Slow walk corresponds to small and low-
speed steps which we usually take while moving inside the
home or while talking to a friend or while moving in groups.
We tracked 3 users moving slowly and taking small steps,
emulating such slow walks. We are able to achieve an accu-
racy of >98% on average. Tracking such steps is important
for applications like indoor localization [9], where GPS like
capabilities are unavailable, and pedestrian dead-reckoning
is a candidate solution.

� Normal walk: A typical walk produces promising SNR
which re�ects in near-perfect, >99%, accuracy. Of course,
this is the reason phones and watches perform quite well

since the peaks from each step rise above the noise �oor.
Several apps are tuned to identify this mode of walking.

� Running: STEAR is able to count running steps with
high accuracy as well. Figure 7(b) shows that there exists
an opportunity of exploitation here, in the form of counting
number of −д + ϵ acceleration points. In other words, when
the runner’s legs both are o� the ground, the IMU acceler-
ations shows an instantaneous ZERO measurement, which
precisely counts the number of steps. Thus, large random
hardware noise is the only reason to mis-count steps during
running.
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Figure 8: Steps counts under di�erent walking modes

We observe that when a user has a phone in his hand and
walks with a typical gait, both earbuds and phones perform
equally well, as shown in Figure 9, and achieve near-perfect
accuracy. But walking with the phone in pockets – both
left-pocket (LP) and right-pocket (RP) – or playing with it,
leads to over-estimation of step-counts.

� Jumping: Medical practitioners suggest numerous styles
of jumping for recoveries [6]. As shown previously in Figure
6, our evaluation suggests that we can exploit models of
jump to �nd out instants of (a) rising up for the jump (smaller
peak), (b) landing back on the ground (larger peak) and (c)
time spent in the air (based on zero acceleration). Naturally,
it is possible to count number of jumps with near-perfect
accuracy. Also, the height of a jump, given by дt2/8, can be
calculated from the length of the horizontal line between
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Figure 10: Jump height compensation as per shoe lift

Table 1: Jump height estimation

Trials 1 2 3 4 5

Actual height (cm) 21 20 17 19 20
Calculated height (cm) 20 21 15 17 18

rising and landing. This unique opportunity, a long run of 0
acceleration, can be exploited to identify jump from a series
of activities as well. But we needed to compensate for, hl i f t ,
the height of the heel when toe lifts o� from the ground
because acceleration goes to 0 only when the whole body
is completely in air (see Figure 10). STEAR measures jump
height with an error of +/−2cm while the count of jumps is
accurate to the ground truth, as presented in Table 1.

5 RELATED WORK
Wearables based step counter: Step counters are nothing
new and have been implemented on a lot of mobile/wearable
devices. The technique is not di�cult, but it can su�er from
errors. According to a recent measurement study [1], there
is an 18.48% error in step counting over a 24-hour free-living
period. Our work with an accuracy of > 95% provides a new
opportunity to do better step counting in daily life.

Jumpanalytics using inertial sensors: There are an abun-
dance of work that tracks various kinds of human motion,
[6], MUSE [8] and SensorTape [3], to name a few. The closest
to our work is [6], where they also calculate jump height
using IMUs. However, the use of double integration to get
vertical displacement, is subjected to noise. Our method,

which explores the opportunity where acceleration equals
to zero, is much more robust.

6 CONCLUSION
This paper shows the promise of robust step counting through
ear mounted IMUs in modern earphones. The core oppor-
tunity emerges from the observation that the human body
serves as a natural “�lter”, eliminating the noisy movements
and only allowing certain walk-related vibrations to prop-
agate up to the ear. We conjecture that this is due to the
anatomical structure of the body – the joints in the skele-
tons and the muscles and tissues – which absorbs higher
frequency movements, however, understanding the reasons
for such �ltering is a topic of study in another �eld (e.g.,
kinesiology). We bene�t from this natural opportunity by
demonstrating that physio-analytics can be improved with
earables, not only in robustly counting steps but also in
measuring the height of human jumps. Our ongoing in-
vestigation is focussed on further improvements to sensing
these actions, and exploring other unique motion-related
opportunities from earable IMUs.
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